a2 United States Patent

Ahsan et al.

US009420287B2

(10) Patent No.: US 9,420,287 B2
(45) Date of Patent: *Aug. 16,2016

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

MULTIMEDIA DISTRIBUTION SYSTEM
Applicant: Sonic IP, Inc., San Diego, CA (US)

Inventors: Abou Ul Aala Ahsan, Irvine, CA (US);
Steve R. Bramwell, San Diego, CA
(US); Brian T. Fudge, Los Angeles, CA
us)

Assignee: Sonic IP, Inc., San Diego, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 158 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/913,187
Filed: Jun. 7,2013

Prior Publication Data

US 2014/0211840 A1 Jul. 31, 2014

Related U.S. Application Data

Continuation of application No. 11/258,496, filed on
Oct. 24, 2005, now Pat. No. 8,472,792, which is a
continuation-in-part of application No. 11/016,184,
filed on Dec. 17, 2004, now Pat. No. 8,731,369, which
is a continuation-in-part of application No.
10/731,809, filed on Dec. 8, 2003, now Pat. No.
7,519,274.

Int. Cl.

HO4N 19/85 (2014.01)

HO04N 5/91 (2006.01)
(Continued)

U.S. CL

CPC HO4N 19/00903 (2013.01); G11B 20/10

(2013.01); G11B 27/3027 (2013.01);

(Continued)

Field of Classification Search
CPC HO4N 19/85; HO04N 5/91;, HO4N 7/12;
GOG6F 5/00; GO6F 7/00; GO6F 17/30

32349 38 40 41 s

USPC oo 375/240.01; 710/36; 715/201;
G9B/20.009, 27.002, 27.033, 27.043
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,009,331 A 2/1977 Goldmark et al.
4,694,357 A 9/1987 Rahman et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1221284 A 6/1999
CN 1723696 A 1/2006

(Continued)
OTHER PUBLICATIONS

“OpenDML AVI File Format Extensions,” Sep. 1997, Version 1.02,
XP-002179318, OpenDML AVI M-JPEG File Format Subcommitee,
42 pgs.

(Continued)

Primary Examiner — Geepy Pe
Assistant Examiner — Syed Hasan
(74) Attorney, Agent, or Firm — KPPB LLP

(57) ABSTRACT

A multimedia file and methods of generating, distributing and
using the multimedia file are described. Multimedia files in
accordance with embodiments of the present invention can
contain multiple video tracks, multiple audio tracks, multiple
subtitle tracks, a complete index that can be used to locate
each data chunk in each of these tracks and an abridged index
that can enable the location of a subset of the data chunks in
each track, data that can be used to generate a menu interface
to access the contents of the file and ‘meta data’ concerning
the contents of the file. Multimedia files in accordance with
several embodiments of the present invention also include
references to video tracks, audio tracks, subtitle tracks and
‘meta data’ external to the file. One embodiment of a multi-
media file in accordance with the present invention includes a
series of encoded video frames, a first index that includes
information indicative of the location within the file and char-
acteristics of each encoded video frame and a separate second
index that includes information indicative of the location
within the file of a subset of the encoded video frames.

11 Claims, 32 Drawing Sheets

US 9,420,287 B2

Page 2

(1)

(52)

(56)

Int. Cl1.
HO4N 7/12
GO6F 5/00
GO6F 7/00
GO6F 17/30
G11B 20/10
G11B 27/30
G11B 27/32
HO4N 77173
HO4N 21/426
HO4N 21/81
HO4N 21/84
HO4N 21/845
HO4N 21/854

HO4N 21/8543

HO4N 21/858
HO4N 19/159
HO4N 19/176
HO4N 19/196
HO4N 19/149
HO4N 19/61
HO4N 19/107
HO4N 197117
HO4N 19/126
HO4N 19/186
HO4N 19/152
HO4N 19/154
HO4N 19/18
HO4N 19/192
HO4N 19/48
HO4N 19/80
HO4N 19/577
U.S. CL

CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)

G11B27/322 (2013.01); HO4N 7/17318

(2013.01); HO4N 19/107 (2014.11); HO4N
19/117 (2014.11); HO4N 19/126 (2014.11);
HO4N 19/149 (2014.11); HO4N 19/152
(2014.11); HO4N 19/154 (2014.11); HO4N
19/159 (2014.11); HO4N 19/176 (2014.11);
HO4N 19/18 (2014.11); HO4N 19/186
(2014.11); HO4N 19/192 (2014.11); HO4N
19/196 (2014.11); HO4N 19/198 (2014.11);
HO4N 19/48 (2014.11); HO4N 19/577
(2014.11); HO4N 19/61 (2014.11); HO4N 19/80
(2014.11); HO4N 19/85 (2014.11); HO4N
21/42646 (2013.01); HO4N 21/8106 (2013.01);
HO4N 21/8133 (2013.01); HO4N 21/84
(2013.01); HO4N 21/8455 (2013.01); HO4N
21/8456 (2013.01); HO4N 21/8543 (2013.01);
HO4N 21/8586 (2013.01); HO4N 21/85406

U.S. PATENT DOCUMENTS

4,802,170
4,964,069
5,119,474
5,274,758
5,396,497
5,412,773
5,420,801
5,420,974
5,471,576
5,487,167

> e e >

1/1989
10/1990
6/1992
12/1993
3/1995
5/1995
5/1995
5/1995
11/1995
1/1996

References Cited

Trottier

Ely

Beitel et al.
Beitel et al.
Veltman
Carlucci
Dockter et al.
Morris et al.
Yee

Dinallo et al.

(2013.01)

5,533,021
5,537,408
5,539,908
5,541,662
5,583,652
5,619,338
5,627,936
5,633,472
5,642,171
5,655,117
5,664,044
5,675,382
5,675,511
5,684,542
5,715,356
5,719,786
5,745,643
5,751,280

5,763,800
5,765,164
5,794,018
5,822,524
5,828,370
5,844,575
5,848,217
5,903,261
5,907,597
5,915,066
5,956,729
5,959,690
6,046,778
6,065,050
6,079,566
6,169,242
6,204,883
6,308,005
6,330,286
6,374,144
6,395,969
6,665,835
6,671,408
6,697,568
6,725,281
6,819,394
6,856,997
6,917,652
6,944,629
6,985,588
6,988,144
7,127,155
7,209,892
7,237,061
7,246,127
7,330,875
7,356,245

7,366,788
7,457,359
7,493,018
7,869,691
8,233,768
8,289,338
8,472,792
RE45,052
2001/0030710
2002/0034252
2002/0051494
2002/0062313
2002/0091665
2002/0093571
2002/0110193
2002/0118953
2002/0143413
2002/0143547
2002/0147980
2002/0161462
2002/0180929
2002/0184159

O e e e 0 e 0 0 B B 0 e B B 2 0 B D B B 0 0 B B D

7/1996
7/1996
7/1996
7/1996
12/1996
4/1997
5/1997
5/1997
6/1997
8/1997
9/1997
10/1997
10/1997
11/1997
2/1998
2/1998
4/1998
5/1998

6/1998
6/1998
8/1998
10/1998
10/1998
12/1998
12/1998
5/1999
5/1999
6/1999
9/1999
9/1999
4/2000
5/2000
6/2000
1/2001
3/2001
10/2001
12/2001
4/2002
5/2002
12/2003
12/2003
2/2004
4/2004
11/2004
2/2005
7/2005
9/2005
1/2006
1/2006
10/2006
4/2007
6/2007
7/2007
2/2008
4/2008

4/2008
11/2008
2/2009
1/2011
7/2012
10/2012
6/2013
7/2014
10/2001
3/2002
5/2002
5/2002
7/2002
7/2002
8/2002
8/2002
10/2002
10/2002
10/2002
10/2002
12/2002
12/2002

Branstad et al.
Branstad et al.
Chen et al.
Adams et al.
Ware

Nakai et al.
Prasad et al.
DeWitt et al.

Baumgartner et al.

Goldberg et al.
Ware
Bauchspies
Prasad et al.
Tsukagoshi
Hirayama et al.
Nelson et al.
Mishina
Abbott
Rossum et al.
Prasad et al.
Vrvilo et al.
Chen et al.
Moeller et al.
Reid

Tsukagoshi et al.
Walsh et al.

Mark

Katayama

Goetz et al.
Toebes, VIII et al.
Nonomura et al.
DeMoney

Eleftheriadis et al.

Fay et al.
Tsukagoshi
Ando et al.
Lyons et al.
Viviani et al.
Fuhrer
Gutfreund et al.
Kaku

Kaku

Zintel et al.
Nomura et al.
Leeetal.

Lyu

Shioi et al.
Glick et al.
Luken et al.
Ando et al.
Galuten et al.
Boic
Murakami et al.
Parasnis et al.

Belknap

Jones et al.
Mabey et al.
Kim

Kelly et al.
Soroushian et al.
Priyadarshi et al.
Butt et al.

Li

‘Werner

Owen et al.
Yamaguchi et al.
Lee et al.

Beek et al.
Hyodo

Yoo et al.

Kim

Fay et al.

Fay et al.

Satoda

Fay et al.

Tseng et al.
Tayadon et al.

GO6F 17/30017

348/E7.071

G11B 27/005
386/239

US 9,420,287 B2

Page 3
(56) References Cited WO 2009065137 Al 5/2009
WO 2012094181 A2 7/2012
U.S. PATENT DOCUMENTS WO 2012094189 Al 7/2012
2002/0191112 Al 12/2002 Akiyoshi et al. OTHER PUBLICATIONS
%88%;853}322 2} 1%@88% i,}lgllsﬁinul;:ztazl' Author Unknown, AVI RIFF File Reference (Direct X 8.1 C++
2003/0005442 Al 1/2003 Brodersen et al. Archive), printed from http://msdn.microsott.com/archive/en-us/
2003/0035488 Al 2/2003 Barrau dx81__c/directx__cpp/htm/avirifffilereference.asp?fr . . . on Mar. 6,
2003/0078930 Al 4/2003 Surcouf G11B 27/005 2006, 7 pgs.
2003/0093799 Al 5/2003 Kauffman et a Author Unknown, “Entropy and Source Coding (Compression),” pp.
2003/0123855 Al 7/2003 Okada et al. 1-22, TCOM 570, 1999, USA.
2003/0133506 Al 7/2003 Hane_da Author Unknown, “MPEG-4 Video Encoder: Based on International
2003/0165328 Al 9/2003 Grecia Standard ISO/IED 14496-2,” pp. 1-15, Patni Computer Systems,
2003/0185302 Al 10/2003 Abrams, Jr. Lid.. Publication Date Unknown. USA.
2003/0185542 Al 10/2003 McVeigh et al. B " . ’ o .
. roadq—The Ultimate Home Entertainment Software, printed May
2003/0206558 Al 11/2003 Parkkinen et al. 11 2009 Retrieved T ittp:/ Aweb.srchi web!
2004/0006701 Al 1/2004 Kresina et al. : y ctreve rom - Ip://Web.SIChive.org/we
5004/0021684 Al 2/2004 Millner 20030401122010/www.broadq.com/qcasttuned, 1 pg. o
5004/0025180 Al 22004 Begeja et al. European Supplementary Search Report for Application
2004/0047614 Al 3/2004 Green EP09759600, completed Jan. 25, 2011, 11 pgs.
2004/0052501 Al 3/2004 Tam IBM Corporation and Microsoft Corporation, “Multimedia Program-
2004/0071453 Al 4/2004 Valderas ming Interface and Data Specifications 1.0”, Aug. 1991, Printed
2004/0114687 Al 6/2004 TFerris et al. From http://www.kk.iij4u.orjp/~kondo/wave/mpidata.txt on Mar. 6,
2004/0117347 Al 6/2004 Seo et al. 2006, 100 pgs. _ N _
2004/0136698 Al 7/2004 Mock International Search Report and Written Opinion for International
2004/0143760 Al 7/2004 Alkove et al. Application No. PCT/US2004/041667, International Filing Date
2004/0146276 Al 7/2004 Ogawa Dec. 8,2004, Search Completed May 24,2007, Mailed Jun. 20,2007,
2004/0217971 Al 11/2004 Kim et al. 6 pgs.
2005/0055399 Al 3/2005 Savchuk KISS DP-500 from http://www Xkiss-technology.com/?p=dp500, 10
2005/0180641 Al 82005 Clark KISS Players, 1 pg.
2005/0196147 Al 9/2005 Seo et al. Linksys Wireless-B Media Adapter Reviews, printed May 4, 2007
2005/0207442 Al 9/2005 Zoest et al. from http://reviews.cnet.com/Linksys_ Wireless_ B_ Media__
2006/0093320 Al 5/2006 Hallberg HO4N 5/76 Adapter/4505-6739__7-30421900 .html?tag=box, 5 pgs.
386/241 Linksys, KISS DP-500, printed May 4, 2007 from http://www kiss-
2006/0129909 Al 6/2006 Butt et al. technology.com/?p=dp500, 2 pgs.
2006/0168639 Al 7/2006 Gan et al. Linksys: “Enjoy Your Digital Music and Pictures on Your Home
2006/0235880 Al 10/2006 Qian Entertainment Center, Without Stringing Wires!”, Model No. WMA
2006/0267986 Al 11/2006 Baeetal. 11 B, printed May 9, 2007 from http://www.linksys.com/servlet/
2006/0274835 Al 12/2006 Hamilton et al. Satellite?c=L._ Product_ C2&childpagename=US/Layout
2007/0005333 Al 1/2007 Setiohardjo et al. &cid=1115416830950&p.
2008/0120330 Al 5/2008 Reed et al. Microsoft Corporation, “Chapter 8, Multimedia File Formats” 1991,
2008/0120342 Al 5/2008 Reed et al. Microsoft Windows Multimedia Programmer’s Reference, 3 cover
2008/0177775 Al 7/2008 Kawate et al. pages, pp. 8-20.
2008/0294691 Al 11/2008 Chang et al. Microsoft Windows XP Media Center Edition 2005, Frequently
2013/0055084 Al 2/2013 Soroushian et al. asked Questions, printed May 4, 2007 from http://www.microsoftt.
2015/0104153 Al 4/2015 Braness et al. com/windowsxp/mediacenter/evaluation/faq. mspx.
Microsoft Windows XP Media Center Edition 2005: Features,
FORFEIGN PATENT DOCUMENTS printed May 9, 2007, from http://www.microsoft.com/windowsxp/
mediacenter/evaluation/features.mspx, 4 pgs.
EP 0677961 A2 10/1995 Morrison, “EA IFF 85” Standard for Interchange Format Files, Jan.
EP 757484 A2 2/1997 14, 1985, printed from http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/
EP 1420580 Al 5/2004 IFF.txt on Mar. 6, 2006, 24 pgs.
EP 1718074 Al 11/2006 Nam Phamdo, “Theory of Data Compression,” pp. 1-12, Publication
Jp 07334938 A 12/1995 Date Unknown, USA.
Jp 1996163488 A 6/1996 Open DML AVI-M-JPEG File Format Subcommittee, “Open DML
P 08287613 A~ 11/1996 AVI File Format Extensions”, Version 1,02, Feb. 28, 1996, 29
P 11328929 A 11/1999 ' Po TED 28 1 7 PES:
P 2001043668 A 5/2001 Pc World.Com, Future Gear: PC on the HiFi, and the TV, from
P 2002170363 A 6/2002 http://www.pcworld.com/article/id, 108818-page, l/article html,
1P 2002218384 A 8/2002 printed May 4, 2007, from IDG Networks, 2 pgs.
P 2003023607 A 1/2003 Qtv—About BroadQ, printed May 11, 2009 from http://www.
JP 2003250113 A 9/2003 broadq.com/en/about.php, 1 pg.
JP 2005027153 A 1/2005 Supplementary European Search Report for Application No. EP
KR 100221423 Bl 6/1999 04813918, Search Completed Dec. 19, 2002, 3 pgs.
KR 2002013664 A 2/2002 Taxan, A Vel LinkPlayer? for Consumer, I-O Data USA—Prod-
KR 20020064888 A 8/2002 ucts—Home Entertainment, printed May 4, 2007 from http://www.
wo 9515660 Al 6/1995 iodata.com/usa/products/products.php?cat=HNP&sc=AVEL
wo 846005 A2 1071998 &pld=AVLP2/DVDLA&ts=2&tsc, |
WO 9937072 A2 7/1999 P : ceIse, | pe . .
WO 0131497 Al 5/2001 Wi-FiPlanet, The Wireless Digital Picture Fram Arrives, printed May
WO 0150732 A2 7/2001 4, 2007 from http://www.wi-fiplanet.com/news/article.php/
WO 0201880 Al 1/2002 3093141, 3 pgs.
WO 2004054247 Al 6/2004 Windows Media Center Extender for Xbox, printed May 9, 2007
wO 2004097811 Al 11/2004 from http://vvww.xbox.com/en-US/support/systemuse/xbox/con-
WO 2007026837 Al 3/2007 sole/mediacenterextender.htm, 2 pgs.

US 9,420,287 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Windows XP Media Center Edition 2005 from http://download.
microsoft.com/download/c/9/a/c9a7000a-66b3-455b-860b-
1cl6f2eectfec/MCE .pdf, 2 pgs.

Written Opinion for International Application No. PCT/US2008/
083816, Opinion completed Jan. 10, 2009, mailed Jan. 22, 2009, 5
pgs.

Written Opinion of the International Searching Authority for Inter-
national Application No. PCT/US 09/46588, date completed Jul. 14,
2009, date mailed Jul. 23, 2009, 5 pgs.

I-O Data, Innovation of technology arrived, from http://www.iodata.
com/catalogs/ AVLP2DVDLA _ Flyer200505 .pdf, 2 pgs.

“DVD subtitles”, sam.zoy.org/writings/dvd/subtitles, Dated Jan. 9,
2001, printed Jul. 2, 2009, 4 pgs.

“DVD-Mpeg differences”, http://dvd.sourceforge.net/dvdinfo/
dvdmpeg html, printed on Jul. 2, 2009, 1 pg.

“Final Committee Draft of MPEG-4 streaming text format”, Interna-
tional Organisation for Standardisation, Feb. 2004, 22 pgs.
“Information Technology—Coding of audio-visual objects—Part
17: Streaming text”, International Organisation for Standardisation,
Feb. 2004,16 pgs.

“Information technology—Coding of audio-visual objects—Part 18:
Font compression and streaming”, ISO/IEC 14496-18, First edition
Jul. 1, 2004, 26 pgs.

“OpenDML AVI File Format Extensions”, www.the-labs.com/
Video/odmlffZ-avidef.pdf, Authored by the OpenDML AVI M-JPEG
File Format Subcommittee, Sep. 1, 1997.

“QCast Tuner for PS2, printed May 11, 2009 from http://web.archive.
org/web/20030210120605/www.divx.com/software/detail.
php?ie=39, 2 pgs”.

“Video Manager and Video Title Set IFO file headers”, printed Aug.
22, 2009 from http://dvd.sourceforge.net/dvdinfo/ifo htm, 6 pgs.
“What is a DVD?”, printed Aug. 22, 2009 from http://www.
videohelp.com/dvd, 8 pgs.

“What is a VOB file”, http://www.mpucoder.com/DVD/vobov.html,
printed on Jul. 2, 2009, 2 pgs.

“What’s on a DVD?”, printed Aug. 22, 2009 from http://www.
doom9.org/dvd-structure.htm, 8 pgs.

Casares et al.,, “Simplifying Video Editing Using Metadata”,
DIS2002, pp. 157-166.

Darek Blasiak, Ph.D., “Video Transrating and Transcoding: Over-
view of Video Transrating and Transcoding Technologies,”,
Ingenient Technologies, Aug. 6, 2002, Houston, TX, USA. pp. 1-22.
Long et al., “Silver: Simplifying Video Editing with Metadata”,
Demonstrations, CHI 2003: New Horizons, pp. 628-629.

Nelson, “Arithmetic Coding + Statistical Modeling = Data Compres-
sion: Part 1—Arithmetic Coding”, Doctor Dobb’s Journal, Feb.
1991, USA, pp. 1-12.

Noboru, Takematsu, “Play Fast and Fine Video on Web! codec”, Co.9
No. 12, Dec. 1, 2003, pp. 178-179.

Noe, A., “Matroska File Format”, Retrieved from the Internet:
URL:http://web.archive.orgweb/20070821155146/www.matroska.
org/technical/specs/matroska.pdf Retrieved on Jan. 19, 2011, Jun.
24, 2007, pp. 1-51.

Noe, Alexander, “AVI File Format”, http://www.alexander-noe.com/
video/documentation/avi.pdf, pp. 1-26.

Noe, Alexander, “Definitions”, http://www.alexander-noe.com/
video/amg/definitions. html, Apr. 11, 2006.

Extended European Search Report for European Application
EP15162562.1, Report Completed Jul. 21, 2015, Mailed Jul. 29,
2015, 4 Pgs.

International Search Report and Written Opinion for International
Application No. PCT/US2008/083816, completed Jan. 10, 2009,
mailed Jan. 22, 2009, 7 pgs.

International Search Report for International Application No. PCT/
US2009/046588, Date Completed Jul. 14, 2009, Date Mailed Jul. 23,
2009, 2 pgs.

“Container format (digital)”, printed Aug. 22, 2009 from http://en.
wikipedia.org/wiki/Container_format (digital), 4 pgs.

“OpenDML AVI File Format Extensions”, XP002179318, Sep.
1997, Retrieved from the Internet: URL:http://www.rahul.net/jfm/
odmlff2.pdf Retrieved on Oct. 4, 2001.

“Text of ISO/IEC 14496-18/COR1”, ITU Study Group 16—Video
Coding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC
JTC1/SC29/WGl1 and ITU-T SG16 06), No. N8664, Nov. 7, 2006.
“Text of ISO/IEC 14496-18/FDIS”, ITU Study Group 16—Video
Coding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC
JTC1/SC29/WGl1 and ITU-T SG16 06), No. N6215 Jan. 7, 2004.

* cited by examiner

US 9,420,287 B2

Sheet 1 of 32

Aug. 16, 2016

U.S. Patent

0

1

12

FIG. 1.

-...».,«,{_:.3”

14

Network

o

a9

©

20

US 9,420,287 B2

Sheet 2 of 32

0¢ 9l

yanag
s, ST | PLans
JRUAIX
_ s, _ _ pas, _ JUS, _ _ M, 7 JUdls, 7 Jpas, 7 Jaus, A _ IS, 7 Juas, _ pas, : Jas, * SIS,
s, A pus, 7 Jus, yns,
g B RN i L
Jang KepoAQ orpny yoRLf
JN5, LSI *
~ apiLans
opny 0opig I
punosdyovg || punosIyorg
Appaa0y PRy
|71 puncidaio.g N N%:%
Appiea0 S LSTT oy
PUIOATAL0 f
pino.ssaqog H uns, _ A pas, : Jas, _ RIASEN
HUTY
W _ TS} ©°
Xopul
o sadng aus, psrT | PEL
_ nuapy B owpny
ASpjup.] aduan I
punout Jadi] * i * _ : . _ _
A4S, Fopns, || s, || aas,
YLOT211]
xapui ..
| tadng [S ASIT | oL
AT _0 oo A ATYW Dzmﬁ‘i _n\ES ocoo _E%S__DN(MS; _TQ&S‘_ -

Aug. 16, 2016

U.S. Patent

10peay Urew YIAe,

Jaoui, 5_; AVZE :SeQ t\; _,.5\5. ,23_ _ 1Py, 5:_ QNI LSIT

SR
ddNd

INWGL ST

ST A T ey s 2] 2 [ls)
. IXpi ' ! IAIY (LI I S /7 Z % =
= : oco VHRNL HEXT) y _wmx__ .nﬁx: Z g g1 =
: I i SRR OO A T O s S H D T T - | o1
Lam—y
\ \ \ A0 \ \ \ \
- - 4 777 7

77 7 s 77 777
ot bb v 0e b OV 8E 9€ vE 26

US 9,420,287 B2

Sheet 3 of 32

Aug. 16, 2016

U.S. Patent

L 0°¢ Old

s
_ s,

| ps,

JHS,

s, _ _ pus,

38,

RiziCH _ _ s b opas,

S8, _

AN _

OOOM

ATAIN

/

XS Xapat . 1o P 3P PP Nowg
dng 1adng R oy sadng T 0OPIA
N
opny
PURGLEYIDG
Anpiangy
PRGBSI
ity
TRy °
TR s}
_ RUSH ©

ASDIIO T 2By

ou tadAT

Y107 PHL

EN&\ o Gco —B‘E\ Q;CS"

/}\

ADW, 1S

e}

_,MZQ _ ANFYT, ;i

AL (TARAY w_ _,.@E. .m,mwl;

yoedy
QL agits
AT

XL
Iodng

HOvL]
Gipy
JUINET

B LSTT

XapUt

Hous.
wdng

oy

]

as,

w S,

SOdANTL ISET _

c 00

{T o
EEIL:

(e e o]

el el
!

maovi

AR u\wﬁm

/

i%1 4

8%

0% BT .8E pE .28

U.S. Patent Aug. 16, 2016 Sheet 4 of 32

()]
o

(9]
N

‘avih’ Main Header

D
s

Video Track

Audio Track 1

[#)]
N

D
()]

Audio Track 2

o
o o]

Audio Track 3 (external)

o)
o

Subtitle Track 1

Subtitle Track 2

-~J
o

[T

Subtitle Track 3 (external)

Fig. 2.1.

US 9,420,287 B2

38

U.S. Patent Aug. 16, 2016 Sheet 5 of 32 US 9,420,287 B2

80

'strl” chunk

‘sirh’ syt ‘sird’ ‘st

FIG. 2.2.

US 9,420,287 B2

Sheet 6 of 32

Aug. 16, 2016

U.S. Patent

anjea adA)

/ Awoynvaay

Tork opl

s & ¢ Old

A

N \ \ anjea 1elep Buey adA) /
vEl
82l . / \\ 102l00 4 - \
rvt vl anjea adAy
ccl
/ ewopaidiay T~
\ 74 \
9t anjea adA)
zel palans4ay /
| o<l
\ ewayds JusWLIRIS 40N
ozl _ oL
oLl s S
I— BllayDSIOWNU \. juslusiElSIOWnu UOISIBA /
8Ll cht 1opesHQy oL

US 9,420,287 B2

Sheet 7 of 32

Aug. 16, 2016

U.S. Patent

2

3

1T IBYON 12000 DY

’

REQEIRI2AGTURT |
apoNaLEy T

Kb

2 330 10

L E°¢C Old

UGN

%

ol
e U (RUOU1Ae)

5

"
1 TIBLC/A J3U0T B

LTIy e

O REgoMIHET -

s
2d
)

QeI

oo

eteq

PG SEIREYY

WIBLSAN G

sy T

nonepn Hebentue

¢

1 TIEYi SUOD

&

1ELOAN IRUODI LTI SIFAITROD
T IBYOM IRLOS DI

. ieyamapssBenbug

W

v .
T BN FUOTIXSY

PRI e e

SBUMA JSUCTURI0RIIG
o 7 AE0M WWLONIRIGS
UODSIB L

v +

o ¥ 2BYAAISU0D;

LY rusmst
¥ IBuoaoEs v

L3Iy 00ISI08 ik

apopnuayy

RN

A
I

EAROEERIIEN] S PNESS =) G
IFRON LT DB IPONDLRIY o RUS IS PONNUS I T fouusiutoponnusyy
i

U.S. Patent

155a

Aug. 16, 2016 Sheet 8 of 32 US 9,420,287 B2
Tag
Chunk Index Video Audio
Offset Offset Frame Frame
Tag
Chunk Index Video Audio
Offset Offset Frame Frame
Tag
Chunk Index Video Audio
Offset Offset Frame Frame
/ \
@
155b ® 155¢
@
155d
Tag
Chunk Index Video Audio
Offset Offset Frame Frame
Tag
Chunk Index Video Audio
Offset Offset Frame Frame
154 F:l(:;. :2.:3.:2.

153

U.S. Patent

Aug. 16, 2016 Sheet 9 of 32 US 9,420,287 B2
160
/
//
‘menu’ chunk
‘MRIF' chunk
/
/ |
/ | \
162
158

FIG. 2.4.

U.S. Patent

ManuNodeinterface
LanguageMenus

languagaCode.wstring

startingMenulDint

Aug. 16, 2016

172

|r

LMenuNodelnierfac

Wowheny

Sheet 10 of 32

ManuNodelnterfzee
WowMenuManager

/ mediz:Medig *

nenuOffsatuintdd_t
startingMenullhint

170

176

€

00 MenuNodelseriace
ButtonMeny

196

\

US 9,420,287 B2

174

MenuModelnterface
Media

198

v

enterAction:int
exitAction:int
rrenuTypetint

backgroundyideolDiint
backgroundAudiolDint
startingMenuttemiDiint

overlaylD:int
selectAction:int
upActionint
downdctionint
teflidction:int
rightAction:int
buttonTyparint

topint
leftint
widtheing

MernuNodelnterfaocy
ManuRectangle

rectangle:MenuRectangle

“IMenuNodelnierface| T MeruNedalnterface
MediaSource

MadiaTrack

-

178

Action

MenuNodeinterizod

-locaoniwsiring

riffOffsetuind4_t
fileSize:int32_t

diaTypawsting

mediaSourcelrint
trackiDiwstring
startFrame:int
endFrame:int
starfTimadouble
endTime:double

i
180 heightint 1 M IZIZTTT AT Bl } !
i f——— i t i
'] A2 ! 2 i
3 Menuhndeltaface ! MenuNodenterface ! MenuNodeinterface |
PlayAction : MenuT ransitionction i RetumToPlayAction §
i ! !
. } i l
videoMadialD: fnt : menuiDiint ; ;)
182 subiitle Tracks: vector<Sublitie Track> | i i 188
audicTracks: vector<Audiolrack> { t {
7 7 v Y .
- e " - MenuNodelnterface | &2 MenuNodsinterface MenuNodelnterface
MenuNodelnterface ! MenuNodenterface FuttonTransitionAction] | SubtitleSelectAction AudicSelectAction
SubtitleTrack ; BudioTrack § Pulustustububibtstuluiiig

cubtitieMediaTrackiD:int
language wsining

audioMediaTrackiDiint
languagewstring

182

194

<

bhittorMenul Dt

191

FIG. 2.5

langusge: watring

language: walring

190

US 9,420,287 B2

Sheet 11 of 32

Aug. 16, 2016

U.S. Patent

@
061
B a6l . e
¢ UOHOPINRORBIIGNS LORDYIRIOBO Y
161 ADELBIU [DPONIIAN el {9oepouoponnuap
- - i _
i |
¥ i 7 | ?
| {
NIRILRIPAN BIINOTLIPOP | |
EOBHBIOPONNIUBA SOBUSIUIBPONNUOY uepoyuonisuesLuong | | § uopoyuomsuesyruey |) uolavARId
_7 _7 _7 _7 AOBRLIBLUIBPONNLSR w QUBPFPBPONRIUSI “ SOCUSRUBDONIUSHY
iz [A e N |
| b o ~ | | |
| | b [I
!] [b
| |
| | ¢
| |
HOHRISURLL i i
08 LB ODONTIURK [| uonay
_ i | 8L LIS SPONNUSHY
[| 07 | 08 A Gii
| i | |
| i | |
802 |] L _
v 9 ¥
< <
SRHOOTUORE|SUES L SHIRILNUDIH By sibusiosgnudw nuspeRng FLIBRMADAR
STBLSIUIBPINNUDIA DCRLORHBLOMNUDIN adplIRURRONNUSIN 2OEUSIUBPOMITUR BTELSIIBPONNUSIN STRLBISLONUS
3 i A i
| | i |
. _ . 081 844 v
00c Pl
o|gE j URRTISWeL] RIRRR GAL snuajyadenbuey
FOBPSIHAPONTUSHY BDEHSILDPONNUDBY BOCLBWDPONALSY
A A
I b e e e 4 [e e e e e e e -
!!!!!!!!!!!!!!!!!!!!!! al } |
JafRuRnUSIMa AL
D4

QUBLIBIIBPGRNUSIA

US 9,420,287 B2

Sheet 12 of 32

Aug. 16, 2016

U.S. Patent

502 e £1'9°¢ Ol

B

ud apoAsnnRN;

i UonRjSERL 061
4
S epo yafenduey |
H 1 uopusunIy,

§ oy
CSOVTSIR],

el
FONTISURIY

7 oo
udnesnelf

A 5
7 ~

¢ dnyouy
if

7 saudeyy

k 7.y

7 1
T adesyy

BIP3 RMOSPDNY | TTmmmel 0 Tl TTeeel

pERER TN
BIPAPINKAK]

081

SYORIY,

nusy

<
aifuenay wonumy

UOHOBRS

YooY

[uoung

T UONTE

¢ onng

1 SHEAY
Aeaduwy

ST
SAURT

U.S. Patent Aug. 16, 2016 Sheet 13 of 32 US 9,420,287 B2

266 268 286 264 e 264 86 282
\\ \‘\, \\‘ \\ \ &\ / //
AL 7 7
NN \x N / 4
\ R \ N \\ \ ;‘! / —
JAAHEEYREAE N AAAHEAARE HARL

FIG. 2.7,

U.S. Patent

Aug. 16, 2016 Sheet 14 of 32 US 9,420,287 B2
266' 266 266 270 264’ 264' 264'270 %6 270 20 262 270
NV VNN Y // / //

D D D D BZ—‘
ANTANAISISES VilA A \; ATANALS VIATALA v AfALA
1231233 1 350"1233; zsi‘4 '..123$V

FIG. 2.8.

42

U.S. Patent Aug. 16, 2016 Sheet 15 of 32 US 9,420,287 B2

'ORM' Chunk

280

T~ ‘Frame’

282

T~ ‘Status’

284

™~ ‘Offset’

288

| ‘Number’

288

[/) S

— ‘Key'

FIG. 2.9. AN

US 9,420,287 B2

Sheet 16 of 32

Aug. 16, 2016

U.S. Patent

0S¢

cGe

ajid
BIpawiinpy

g6t

12519

JEVNCETIEN]

Jabeuepy
Eleq eI,

TARwew

0¢ 9old

7 18p0oSues | | Jopoosuel | £9RIANS
AN ™~
8.¢€ o8
zennans viE
7 19pOOSUBL | | Jopoosues | !
N A \/ﬂoﬁ
8.e e
7 19poosues | | Jjopoosuel | Em/ ree
AN I~
8.¢ e
19p0osu7 olpny 18pooe(] oIpny !
N N
[AAS 0/t
19POOUT oIpNY 1OpO93(OlpNYy .
N AN
a0 o
19P0oUT oIpny 19p0o8a(] oIpnYy Loipny 89¢ .
N N ﬁ
FAN 0/€
o) eee
18p0oUT 03PIA 19p025(] 09pIA ﬁ
98¢ ot T
1axa c9
e

\\!(HVJJ/
~ NNWG 09¢

U.S. Patent Aug. 16, 2016 Sheet 17 of 32 US 9,420,287 B2

386

}_.
)
>
[}
Q
«Q
Cf)
Tnl
. o
3 .
Bren
(3]
S @)
Li
-v-
o0
[4p]
h
‘_J-.-
S
XO

382

US 9,420,287 B2

Sheet 18 of 32

Aug. 16, 2016

U.S. Patent

11974

oty
9ty

NNNG JOJBIBUSE) NUBI }_::xg w Japoosuel | |9pon PO BIpaN
0ty / /
mmv Vey 44 4
86
85t oop INB NUSIN 0sv
AROIE
A% 4 nen
z L Aepong
| R l\\\! lopoosuerj /wvv ispoasuel | ;/mgﬁ
\\\\ 1/1 Jopooul 18pooaq opny) Bey
olpny AN olpny N -
1 A e NgU@Nv
\ Japooug 18p0oe(] O9pPIA
09pIA 08pIA \/H%
d /Q% eer vey
I 4 /
1 /

0cv

US 9,420,287 B2

Sheet 19 of 32

Aug. 16, 2016

U.S. Patent

€€ Ol vey | e

g i
100140y f mig0 e Om.v‘
1 dmjoory i opol; | uogeisuRLy @@.V
avv_.ﬂc UQIBISUBLY, 8 3237 w ua.ﬂnuo
09 aiqel, L LEEETEL s
uOBEBSURLE, - R - - 1537
T Hugom«_nos.._ N 881
T o - L e reoreccouer et KRN
R L. Soatvmemeise 4 e
- IHM e LT
e s I..rlr
e e L T 6¥ ! . It
S ‘ bl aszo
. : 4 IR
* f % HIBLL BIDOIN
X :
1051q0) “: Lo
{ dey or} 900
er————— P B i
,.n/ IpG
SN wfa0
samoszipa | T FIRILEIPAN
fore 3RRO. AR
=2fq0 06t ¥ samogeipop® | T TG vy Rl R,
ipaIn £ H B N . e e
EPILT i 4520 R T el
sefeuspy N 090 ll:s!liliﬁtl T el e
2IpSKAI] 7 HowsLEIpapy / el T /..,
ES e
’ 1wala0 ' #x e o s
9y | ooe Y s 88y N .

: ;| : ~ N

I i ypmpepen . Va4 . :owwmmwﬁ "

4 3po #v "~ (N fitiely)
-l efao : A 28umooy 199{q0 uoyay
b oyowig v § i ON. .V UCHIRFSOIpRY
98Y = ==
99¥ ‘ Al who o =0

uoneY

cov

' ‘
323 .EO uonyy
UORIRISAINGNG

| wonng

w390
i snuap pror
&N 1 wmv uemstesyuonng |~ va
T SHBWN § RS
oFenGuey | R uotHsURL RUSI
- 8Ly

9y

US 9,420,287 B2

Sheet 20 of 32

Aug. 16, 2016

U.S. Patent

EIp]

18y

£

[9ME

L8y

1°E¢ Old

A
{50
1 By | Yrpmpp
rdiliilig T 1w, a0
| R EIpopy
o GAT
1de
100 W wagepop agy
gadey) BENTST
IR LRIPIPY 9ot
P00
YoRLLEIPO gav
88y
28y

Sheet 21 of 32

U.S. Patent Aug. 16,2016

US 9,420,287 B2

_4BZ
N - RS » s 'Mwﬂ.w
identify viden' chunk T
&

: i a3 Vs 484
identity ‘sudio’ chunks containing |
cuiresponding audiodniormation

- . v 486
Extract corresponding audio e
intomration
. .) 488
Generate new ‘audio’ chunk using | "
extracied informstion
aﬁ"""‘/L\\‘\
’_,»f"’r'/”’ o g - 490
o Audic information e
[o
remaining? e
ﬁ‘\\\ ”,,-’”’/ﬂ
/;‘ f
/‘// v
e
7 482

Rechuriking completed

US 9,420,287 B2

Sheet 22 of 32

Aug. 16, 2016

U.S. Patent

BHLoD sjey

SJUSLBOOURLR
- BRSIAQUOAS Y
vos 0€s ~
N 028 908
/m - \\.\ /
] Buipony uoneLRsg
94 UBHOW UOHOW 825
£es 25
RO Buipon szZHuEny . 100 IR vogesusdiuosy
passaIdwen STl esioawy | | esieaup |] sweiy |] uosom
\ Z08
8i% 076 808
LOOIDadd & 8Ziuent K 190 e ol -~ Buisssonudeid
$1%4 P05
\ S ” og
¥ig ¢
souanbag
QIO e
HESHELC R R pS g

U.S. Patent

540

Aug. 16, 2016 Sheet 23 of 32

Calculate sverage
difference between
luminance and brightness
of pixels in macroblocks

Calculate the threshold
for applying smoothness
enhancement

US 9,420,287 B2

542

544

546

Perform smoothness /

enhancement

FIG. 3.6.

U.S. Patent Aug. 16, 2016 Sheet 24 of 32 US 9,420,287 B2

570

572

Inspect the frame to
determine average SAD '
j

\

574

Derive thresholds

576

\ o

Apply macroblock SAD
enhancement

FIG. 3.7.

U.S. Patent Aug. 16, 2016 Sheet 25 of 32 US 9,420,287 B2

580

582

\ Commence rate control

584
592
\ Initializing an encoder Determine new /

guantizer value

586 k ~—Yes

oes frame requir
guantization?

Yes

588

/

Are there more

Obtain guantizer frames?

504

No
590 L 506

\ Encode frame Determine new /

guantizer value

FIG. 3.8.

U.S. Patent Aug. 16, 2016 Sheet 26 of 32 US 9,420,287 B2

600

602
Analyze video sequence /
604
Generate map of video /
sequence
606
Develop strategy for /
encoding
608
Perform rate controlled /

encoding

FIG. 3.9.

U.S. Patent Aug. 16, 2016 Sheet 27 of 32 US 9,420,287 B2

622

620 Obtain key to decrypt //

DRM header

624

Decrypt DRM header /

626

Locate DRM chunk /

628
Obtain encryption key /
from DRM header and

decrypt video chunk

630

Decode audio, video and/ /

or subtitle chunks

632

Present audio, video and/ //

or subtitle

634

636
F IG 40 Presentation complete /

U.S. Patent Aug. 16, 2016 Sheet 28 of 32 US 9,420,287 B2

641a

Identify frame to be located within //

video sequence

Identify the ‘tag’ chunk in the ‘index’

chunk that references the encoded | ___———

video frame closest to the desired
frame in the video sequence

641b

Return encoded video frame and or //,,.W-« 641c
portion of audio track(s) indicated by
‘tag’ chunk

y FIG. 4.0.1.

U.S. Patent Aug. 16, 2016 Sheet 29 of 32 US 9,420,287 B2

142 143a

T Identify current ‘tag’ chunk

Compare position within video
—] sequence of encoded video frame

referenced by 'tag’ chunk to position
within video sequence of desired
143d 143c video frame.

143b

Ocate next 'tag’ chunk wit
‘index’ chunk?

[——-—NQ more tag’ chunks

i

Search completed Next ‘tag’ chunk located

Compare position within video
sequence of encoded video frame
T referenced by next ‘tag’ chunk to
143e position within video sequence of
143g desired video frame.

sired frame betwe

frames referenced by current
\m@xt ‘tag’ chunks=
Return location of video frame No
referenced by current ‘tag’ chunk

Set current tag chunk to be the next
‘tag’ chunk

143h

FIG. 4.0.2.

US 9,420,287 B2

Sheet 30 of 32

Aug. 16, 2016

U.S. Patent

L7 "Old

Y99

/

99

/

seheld

19Jj0JJU0D) 81.)S NUB|

aoeLIB)U| 19A8|d NUBIN K

18iepuUsy BIPBIN

//4! 188184 NUBA

099

N

8G9

969
Jaxsidyinwag

ol
elpswniniy

\

0S9
59

2s9

US 9,420,287 B2

Sheet 31 of 32

Aug. 16, 2016

U.S. Patent

FAAIE

29
/ 9.9
\ \\

NUIIA]
BAIY LAY
uoyng uoyng
BAIY BIIY
uopnng uonng ~
Z

/

8.9

¢l9

049

US 9,420,287 B2

Sheet 32 of 32

Aug. 16, 2016

U.S. Patent

fhveriay

o B%\
AsER

Buit:;‘r‘;
Ams\

3N

0

5
S
5

NS

Bt

w36y
g Uy
M sl praved
LR
Lige tadald

S

rrTTTTT

FORLE, ATHIAL TUSIN

F4 7

Sificammnmmin

B U RO R
N3,
;R
oW, RIPHR

SHORLY, 2aneny

0cL

gL

804

sy Qo
FusRy RIS
RRVIY
LR
UELL eipany

sy B
wegung
PiREs),
Iy
AT WP

US 9,420,287 B2

1
MULTIMEDIA DISTRIBUTION SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of U.S. patent
application Ser. No. 11/258,496 filed Oct. 24, 2005, entitled
Multimedia Distribution System, which is a continuation-in-
part of U.S. patent application Ser. No. 11/016,184, filed on
Dec. 17, 2004, entitled Multimedia Distribution System,
which is a continuation-in-part of U.S. patent application Ser.
No. 10/731,809, filed on Dec. 8, 2003, entitled File Format for
Multiple Track Digital Data, and also claims priority from
Patent Cooperation Treaty Patent Application No. PCT/
US2004/041667, filed on Dec. 8, 2004, entitled Multimedia
Distribution System, the disclosures of which are incorpo-
rated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

The present invention relates generally to encoding, trans-
mission and decoding of multimedia files. More specifically,
the invention relates to the encoding, transmission and decod-
ing of multimedia files that can include tracks in addition to a
single audio track and a single video track.

The development of the internet has prompted the devel-
opment of file formats for multimedia information to enable
standardized generation, distribution and display of multime-
dia information. Typically, a single multimedia file includes a
single video track and a single audio track. When multimedia
is written to a high volume and physically transportable
medium, such as a CD-R, multiple files can be used to provide
a number of video tracks, audio tracks and subtitle tracks.
Additional files can be provided containing information that
can be used to generate an interactive menu.

SUMMARY OF THE INVENTION

Embodiments of the present invention include multimedia
files and systems for generating, distributing and decoding
multimedia files. In one aspect of the invention, the multime-
dia files include a plurality of encoded video tracks. In
another aspect of the invention, the multimedia files include a
plurality of encoded audio tracks. In another aspect of the
invention, the multimedia files include at least one subtitle
track. In another aspect of the invention, the multimedia files
include encoded information indexing the audio, video and/or
subtitle tracks.

In one embodiment, the invention includes a series of
encoded video frames, a first index that includes information
indicative of the location within the file and characteristics of
each encoded video frame, a separate second index that
includes information indicative of the location within the file
of a subset of the encoded video frames.

In a further embodiment, the second index includes at least
one tag that references an encoded video frame in the subset
of encoded video frames and each tag includes the location
within the file of the referenced encoded video frame and the
frame number of the encoded video frame in the sequence of
encoded video frames.

Another embodiment also includes at least one audio track.
Inaddition, each tag further comprises a reference to a portion
of at least one of the audio tracks and the portion of the track
that is referenced accompanies the encoded video frame ref-
erenced by the tag.

In a still further embodiment, each tag further comprises a
reference to information located within the first index and the

10

15

20

25

30

35

40

45

50

55

60

65

2

information referenced in the first index is indicative of the
location within the file and characteristics of the encoded
video frame referenced by the tag.

Still another embodiment includes a processor and a
memory including a file containing at least one sequence of
encoded video frames. In addition, the processor is config-
ured to generate an abridged index that references a subset of
the encoded video frames in the sequence of encoded video
frames.

In a yet further embodiment, the processor is configured to
generate a complete index that references all of the encoded
video frames in the sequence of encoded video frames and
each reference to an encoded video frame in the abridged
index includes a reference to the reference to that frame in the
complete index.

In yet another embodiment, each reference to an encoded
video frame in the abridged index includes the sequence
number of the encoded video frame.

In further embodiment again, the processor is configured to
include in each reference to an encoded video frame a refer-
ence to a location within at least one sound track.

Another embodiment again includes a processor and a
memory containing a multimedia file. In addition, the multi-
media file includes a sequence of encoded video frames, a
complete index referencing each encoded video frame in the
sequence of encoded video frames and an abridged index
referencing a subset of the encoded video frames in the
sequence of encoded video frames. Furthermore, the proces-
sor is configured to locate a particular encoded video frame
within the multimedia file using the abridged index.

In a further additional embodiment, the processor is con-
figured to locate reference information in the complete index
using the abridged index.

In another additional embodiment, the multimedia file
includes at least one audio track accompanying the sequence
of encoded video frames and each reference to an encoded
video frame in the abridged index includes a reference to a
portion of at least one of the video tracks.

An embodiment of the method of the invention includes
obtaining a sequence of encoded video frames, identifying a
subset of frames from the sequence of encoded video frames
and generating an abridged index that references the location
within the multimedia file of each encoded video frame in the
subset of encoded video frames.

In a further embodiment of the method of the invention, the
generation of an abridged index further includes generating a
reference to the location of each encoded video frame within
the subset of encoded video frames and recording the
sequence number of each encoded video frame within the
subset of encoded video frames.

Another embodiment of the method of the invention also
includes obtaining at least one audio track accompanying the
sequence of encoded video frames. In addition, the genera-
tion of an abridged index further comprises associating with
each referenced encoded video frame a reference to a location
with at least one of the audio tracks.

A still further embodiment of the method of the invention
also includes obtaining a complete index that includes a ref-
erence to each encoded video frame in the sequence of
encoded video frames. In addition, the generation of an index
further comprises associating with each referenced encoded
video frame a reference to a location within the second index.

Still another embodiment of the method of the invention
includes identifying a desired encoded video frame, deter-
mining the encoded video frame that is closest to the desired
video frame in the second index and displaying an encoded
video frame.

US 9,420,287 B2

3

In a yet further embodiment of the method of the invention,
each reference in the second index to an encoded video frame
also includes a reference to the portion of the first index that
refers to that encoded video frame, displaying an encoded
video frame, further includes using the reference to the
encoded video frame in the second index that is closest to the
desired encoded video frame to locate that encoded frame
within the first index, searching in the first index for the
desired encoded video frame and displaying the desired
encoded video frame.

In yet another embodiment of the method of the invention,
the closest frame is the closest preceding frame in the
sequence to the desired frame.

In a further additional embodiment of the invention, dis-
playing an encoded video frame further includes displaying
the encoded video frame that is determined to be closest to the
desired video frame.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. is a diagram of a system in accordance with an
embodiment of the present invention for encoding, distribut-
ing and decoding files.

FIG. 2.0. is a diagram of the structure of a multimedia file
in accordance with an embodiment of the present invention.

FIG.2.0.1. is a diagram ofthe structure of a multimedia file
in accordance with another embodiment of the present inven-
tion.

FIG. 2.1. is a conceptual diagram of a ‘hdrl’ list chunk in
accordance with one embodiment of the invention.

FIG. 2.2.1s a conceptual diagram of a ‘strl’ chunk in accor-
dance with an embodiment of the invention.

FIG. 2.3. is a conceptual diagram of the memory allocated
to store a ‘DXDT’ chunk of a multimedia file in accordance
with an embodiment of the invention.

FIG. 2.3.1. is a conceptual diagram of ‘meta data’ chunks
that can be included in a ‘DXDT’ chunk of a multimedia file
in accordance with an embodiment of the invention.

FIG.2.3.2.1s a conceptual diagram of an ‘index’ chunk that
can be included in a ‘DXDT’ chunk of a multimedia file in
accordance with an embodiment of the invention.

FIG. 2.4. is a conceptual diagram of the ‘DMNU’ chunk in
accordance with an embodiment of the invention.

FIG. 2.5. is a conceptual diagram of menu chunks con-
tained in a “WowMenuManager’ chunk in accordance with an
embodiment of the invention.

FIG. 2.6. is a conceptual diagram of menu chunks con-
tained within a ‘WowMenuManager’ chunk in accordance
with another embodiment of the invention.

FIG. 2.6.1. is a conceptual diagram illustrating the rela-
tionships between the various chunks contained within a
‘DMNU” chunk.

FIG.2.7.1s aconceptual diagram of the ‘movi’list chunk of
a multimedia file in accordance with an embodiment of the
invention.

FIG.2.8.1s aconceptual diagram of the ‘movi’list chunk of
a multimedia file in accordance with an embodiment of the
invention that includes DRM.

FIG. 2.9. is a conceptual diagram of the ‘DRM’ chunk in
accordance with an embodiment of the invention.

FIG. 3.0. is a block diagram of a system for generating a
multimedia file in accordance with an embodiment of the
invention.

FIG. 3.1. is a block diagram of a system to generate a
‘DXDT’ chunk in accordance with an embodiment of the
invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3.2. is a block diagram of a system to generate a
‘DMNU” chunk in accordance with an embodiment of the
invention.

FIG. 3.3. is a conceptual diagram of a media model in
accordance with an embodiment of the invention.

FIG.3.3.1. is a conceptual diagram of objects from a media
model that can be used to automatically generate a small
menu in accordance with an embodiment of the invention.

FIG. 3.4. is a flowchart of a process that can be used to
re-chunk audio in accordance with an embodiment of the
invention.

FIG. 3.5. is a block diagram of a video encoder in accor-
dance with an embodiment of the present.

FIG. 3.6. is a flowchart of a method of performing smooth-
ness psychovisual enhancement on an I frame in accordance
with embodiments of the invention.

FIG. 3.7. is a flowchart of a process for performing a
macroblock SAD psychovisual enhancement in accordance
with an embodiment of the invention.

FIG. 3.8.1s a flowchart of a process for one pass rate control
in accordance with an embodiment of the invention.

FIG. 3.9. is a flowchart of a process for performing Nth
pass VBV rate control in accordance with an embodiment of
the invention.

FIG. 4.0. is a flowchart for a process for locating the
required multimedia information from a multimedia file and
displaying the multimedia information in accordance with an
embodiment of the invention.

FIG. 4.0.1. is a flowchart showing a process for locating a
specific encoded video frame within a multimedia file using
an ‘index’ chunk in accordance with an embodiment of the
invention.

FIG.4.0.2.1s a flowchart showing a process for locating the
‘tag’ chunk within an ‘index’ chunk that references the pre-
ceding frame closest to a desired video frame within a video
sequence in accordance with an embodiment of the invention.

FIG. 4.1. is a block diagram of a decoder in accordance
with an embodiment of the invention.

FIG. 4.2. is an example of a menu displayed in accordance
with an embodiment of the invention.

FIG. 4.3. is a conceptual diagram showing the sources of
information used to generate the display shown in FIG. 4.2 in
accordance with an embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring to the drawings, embodiments of the present
invention are capable of encoding, transmitting and decoding
multimedia files. Multimedia files in accordance with
embodiments of the present invention can contain multiple
video tracks, multiple audio tracks, multiple subtitle tracks, a
complete index that can be used to locate each data chunk in
each of the tracks and an abridged index that can be used to
locate a subset of the data chunks in each track, data that can
be used to generate a menu interface to access the contents of
the file and ‘meta data’ concerning the contents of the file.
Multimedia files in accordance with several embodiments of
the present invention also include references to video tracks,
audio tracks, subtitle tracks and ‘meta data’ external to the
file.

1. Description of System

Turning now to FIG. 1, a system in accordance with an
embodiment of the present invention for encoding, distribut-
ing and decoding files is shown. The system 10 includes a
computer 12, which is connected to a variety of other com-
puting devices via a network 14. Devices that can be con-
nected to the network include a server 16, a consumer elec-

US 9,420,287 B2

5

tronics (CE) device 17, a lap-top computer 18 and a personal
digital assistant (PDA) 20. In various embodiments, the con-
nections between the devices and the network can be either
wired or wireless and implemented using any of a variety of
networking protocols.

In operation, the computer 12 can be used to encode mul-
timedia files in accordance with an embodiment of the present
invention. The computer 12 can also be used to decode mul-
timedia files in accordance with embodiments of the present
invention and distribute multimedia files in accordance with
embodiments of the present invention. The computer can
distribute files using any of a variety of file transfer protocols
including via a peer-to-peer network. In addition, the com-
puter 12 can transfer multimedia files in accordance with
embodiments of the present invention to a server 18, where
the files can be accessed by other devices. The other devices
can include any variety of computing device or even a dedi-
cated decoder device. In the illustrated embodiment, a set-top
cable box, a lap-top computer and a PDA are shown. In other
embodiments, various types of digital set-top boxes, desk-top
computers, game machines, CE devices and other devices can
be connected to the network, download the multimedia files
and decode them.

In one embodiment, the devices access the multimedia files
from the server via the network. In other embodiments, the
devices access the multimedia files from a number of com-
puters via a peer-to-peer network. In several embodiments,
multimedia files can be written to a portable storage device
such as a disk drive, CD-ROM or DVD. In many embodi-
ments, electronic devices can access multimedia files written
to portable storage devices.

2. Description of File Structure

Multimedia files in accordance with embodiments of the
present invention can be structured to be compliant with the
Resource Interchange File Format (‘RIFF file format’),
defined by Microsoft Corporation of Redmond, Wash. and
International Business Machines Corporation of Armonk,
N.Y. RIFF is a file format for storing multimedia data and
associated information. A RIFF file typically has an 8-byte
RIFF header, which identifies the file and provides the
residual length of the file after the header (i.e. file_length-8).
The entire remainder of the RIFF file comprises “chunks”and
“lists.” Each chunk has an 8-byte chunk header identifying
the type of chunk, and giving the length in bytes of the data
following the chunk header. Each list has an 8-byte list header
identifying the type oflist and giving the length in bytes of the
data following the list header. The data in a list comprises
chunks and/or other lists (which in turn may comprise chunks
and/or other lists). RIFF lists are also sometimes referred to as
“list chunks.”

An AV file is a special form of RIFF file that follow the
format of a RIFF file, but include various chunks and lists
with defined identifiers that contain multimedia data in par-
ticular formats. The AVI format was developed and defined by
Microsoft Corporation. AVI files are typically created using a
encoder that can output multimedia data in the AVI format.
AVl files are typically decoded by any of a group of software
collectively known as AVI decoders.

The RIFF and AVI formats are flexible in that they only
define chunks and lists that are part of the defined file format,
but allow files to also include lists and/or chunks that are
outside the RIFF and/or AVI file format definitions without
rendering the file unreadable by a RIFF and/or AVI decoder.
In practice, AVI (and similarly RIFF) decoders are imple-
mented so that they simply ignore lists and chunks that con-
tain header information not found in the AVI file format
definition. The AVI decoder must still read through these

20

40

45

50

6

non-AVI chunks and lists and so the operation of the AVI
decoder may be slowed, but otherwise, they generally have no
effect on and are ignored by an AVI decoder.

A multimedia file in accordance with an embodiment of the
present invention is illustrated in FIG. 2.0. The illustrated
multimedia file 30 includes a character set chunk (‘CSET’
chunk) 32, an information list chunk (‘INFO’ list chunk) 34,
a file header chunk (‘hdrl’ list chunk) 36, a meta data chunk
(‘DXDT’ chunk) 38, a menu chunk (‘DMNU’ chunk) 40, a
junk chunk (‘junk’ chunk) 41, the movie list chunk (‘movi’
list chunk) 42, an optional index chunk (‘idx1’ chunk) 44 and
a second menu chunk (‘DMNU’ chunk) 46. Some of these
chunks and portions of others are defined in the AVI file
format while others are not contained in the AVI file format. In
many, but not all, cases, the discussion below identifies
chunks or portions of chunks that are defined as part of the
AV file format.

Another multimedia file in accordance with an embodi-
ment of the present invention is shown in FIG. 2.0.1. The
multimedia file 30' is similar to that shown in FIG. 2.0. except
that the file includes multiple concatenated ‘RIFF* chunks.
The ‘RIFF’ chunks can contain a ‘RIFF’ chunk similar to that
shown in FIG. 2.0. that can exclude the second ‘DMNU’
chunk 46 or can contain menu information in the form of a
‘DMNU’ chunk 46'.

In the illustrated embodiment, the multimedia file 30'
includes multiple concatenated ‘RIFF’ chunks, where the first
‘RIFF’ chunk 50 includes a character set chunk (‘CSET’
chunk) 32', an information list chunk (‘INFO’ list chunk) 34",
a file header chunk (“hdrl’ list chunk) 36', a meta data chunk
(‘DXDT’ chunk) 38', a menu chunk (‘DMNU’ chunk) 40', a
junk chunk (‘junk’ chunk) 41', the movie list chunk (‘movi’
list chunk) 42' and an optional index chunk (‘idx1’ chunk) 44'.
The second ‘RIFF’ chunk 52 contains a second menu chunk
(‘DMNU’ chunk) 46'. Additional ‘RIFF’ chunks 54 contain-
ing additional titles can be included after the ‘RIFF” menu
chunk 52. The additional ‘RIFF’ chunks can contain indepen-
dent media in compliant AVI file format. In one embodiment,
the second menu chunk 46' and the additional ‘RIFF’ chunks
have specialized 4 character codes (defined in the AVI format
and discussed below) such that the first two characters of the
4 character codes appear as the second two characters and the
second two characters of the 4 character codes appear as the
first two characters.

2.1. The ‘CSET’ Chunk

The ‘CSET’ chunk 32 is a chunk defined in the Audio Video
Interleave file format (AVI file format), created by Microsoft
Corporation. The ‘CSET’ chunk defines the character set and
language information of the multimedia file. Inclusion of a
‘CSET’ chunk in accordance with embodiments of the
present invention is optional.

A multimedia file in accordance with one embodiment of
the present invention does not use the ‘CSET’ chunk and uses
UTF-8, which is defined by the Unicode Consortium, for the
character set by default combined with RFC 3066 Language
Specification, which is defined by Internet Engineering Task
Force for the language information.

2.2. The ‘INFO’ List Chunk

The ‘INFO’ list chunk 34 can store information that helps
identify the contents of the multimedia file. The ‘INFO’ list is
defined in the AVIfile format and its inclusion in a multimedia
file in accordance with embodiments of the present invention
is optional. Many embodiments that include a ‘DXDT’ chunk
do not include an ‘INFO’ list chunk.

2.3. The ‘Hdrl’ List Chunk

The “hdrl’ list chunk 38 is defined in the AVI file format and

provides information concerning the format of the data in the

US 9,420,287 B2

7
multimedia file. Inclusion of a ‘hdrl” list chunk or a chunk
containing similar description information is generally
required. The “hdrl’ list chunk includes a chunk for each video
track, each audio track and each subtitle track.

A conceptual diagram of a ‘hdrl’ list chunk 38 in accor-
dance with one embodiment of the invention that includes a
single video track 62, two audio tracks 64, an external audio
track 66, two subtitle tracks 68 and an external subtitle track
70 is illustrated in FIG. 2.1. The ‘hdrl’ list 60 includes an
‘avih’ chunk. The ‘avih’ chunk 60 contains global informa-
tion for the entire file, such as the number of streams within
the file and the width and height of the video contained in the
multimedia file. The ‘avih’ chunk can be implemented in
accordance with the AVI file format.

In addition to the ‘avih’ chunk, the ‘hdrl’ list includes a
stream descriptor list for each audio, video and subtitle track.
In one embodiment, the stream descriptor list is implemented
using ‘strl” chunks. A ‘str]” chunk in accordance with an
embodiment of the present invention is illustrated in FIG. 2.2.
Each ‘str]” chunk serves to describe each track in the multi-
media file. The “strl’ chunks for the audio, video and subtitle
tracks within the multimedia file include a ‘strl’ chunk that
references a ‘strh’ chunk 92, a ‘strf” chunk 94, a ‘strd’ chunk
96 and a ‘strn’ chunk 98. All of these chunks can be imple-
mented in accordance with the AV file format. Of particular
interest is the ‘strh’ chunk 92, which specifies the type of
media track, and the ‘strd’ chunk 96, which can be modified to
indicate whether the video is protected by digital rights man-
agement. A discussion of various implementations of digital
rights management in accordance with embodiments of the
present invention is provided below.

Multimedia files in accordance with embodiments of the
present invention can contain references to external files
holding multimedia information such as an additional audio
track or an additional subtitle track. The references to these
tracks can either be contained in the ‘hdrl’ chunk or in the
‘junk’ chunk 41. In either case, the reference can be contained
in the ‘strh’ chunk 92 of a “strl’ chunk 90, which references
either a local file or a file stored remotely. The referenced file

15

8

can be a standard AVI file or a multimedia file in accordance
with an embodiment of the present invention containing the
additional track.

In additional embodiments, the referenced file can contain
any of the chunks that can be present in the referencing file
including ‘DMNU’ chunks, ‘DXDT’ chunks and chunks
associated with audio, video and/or subtitle tracks for a mul-
timedia presentation. For example, a first multimedia file
could include a ‘DMNU” chunk (discussed in more detail
below) that references a first multimedia presentation located
within the ‘movi’ list chunk of the first multimedia file and a
second multimedia presentation within the ‘movi’ list chunk
of a second multimedia file. Alternatively, both ‘movi’ list
chunks can be included in the same multimedia file, which
need not be the same file as the file in which the ‘DMNU”
chunk is located.

2.4. The ‘DXDT’ Chunk

The ‘DXDT’ chunk 38 contains so called ‘meta data’.
‘Meta data’ is a term used to describe data that provides
information about the contents of a file, document or broad-
cast. The ‘meta data’ stored within the ‘DXDT’ chunk of
multimedia files in accordance with embodiments of the
present invention can be used to store such content specific
information as title, author, copyright holder and cast. In
addition, technical details about the codec used to encode the
multimedia file can be provided such as the CLI options used
and the quantizer distribution after each pass.

In one embodiment, the meta data is represented within the
‘DXDT’ chunk as a series of statements, where each state-
ment includes a subject, a predicate, an object and an author-
ity. The subject is a reference to what is being described. The
subject can reference a file, item, person or organization. The
subject can reference anything having characteristics capable
of description. The predicate identifies a characteristic of the
subject that is being described. The object is a description of
the identified characteristic of the subject and the authority
identifies the source of the information.

The following is a table showing an example of how vari-
ous pieces of ‘meta data’, can be represented as an object, a
predicate, a subject and an authority:

TABLE 1

Conceptual representation of ‘meta data’

Subject Predicate Object Authority
_ file281 http://purl.org/dc/elements/1.1/title ‘Movie Title’ __:auth42
__file281 http://xmins.divknetworks.com/2004/11/cast#Person __:cast®71 __:auth42
__file281 http://xmins.divknetworks.com/2004/11/cast#Person __cast®72 __:auth42
__file281 http://xmins.divknetworks.com/2004/11/cast#Person __:cast®73 __:auth42
__:cast871 http://xmins.divxnetworks.com/2004/11/cast#name ‘Actor 1” __:auth42
__:cast871 http://xmins.divknetworks.com/2004/11/cast#role Actor __:auth42
__:cast871 http://xmins.divknetworks.com/2004/11/cast#character ‘Character Name 1’ __:auth42
_ :cast282 http://xmlns.divinetworks.com/2004/11/cast#name ‘Director 1° _ :auth42
__:cast282 http://xmins.divknetworks.com/2004/11/cast#role Director __:auth42
__:cast283 http://xmins.divxnetworks.com/2004/11/cast#name ‘Director 2’ __:auth42
_ :cast283 http://xmlns.divinetworks.com/2004/11/castrole Director _ :auth42
__file281 http://purl.org/dc/elements/1.1/rights Copyright 1998 ‘Studio Name’. __:auth42
All Rights Reserved.
_ :file281 Series _ :file321 _ :auth42
__file321 Episode 2 __:auth42
__file321 http://purl.org/dc/elements/1.1/title ‘Movie Title 2° __:auth42
_ :file321 Series _ file122 _ :auth42
__file122 Episode 3 __:auth42
__file122 http://purl.org/dc/elements/1.1/title ‘Movie Title 3° __:auth42
_ :auth42 http://xmlns.com/foaf/0.1/Organization _ :foaf92 _ :auth42
__foafo2 http://xmins.com/foaf/0.1/name ‘Studio Name’ __:auth42
__file281 http://xmllns.divxknetworks.com/2004/1 1/track#track __track#dc00 __:auth42
__track#dc00 http://xmlns.divinetworks.com/2004/11/track#resolution 1024 x 768 _ :auth42
__file281 http://xmins.divknetworks.com/2004/11/content#certificationLevel ~HT __:auth42
__track#dc00 http:/xmlns.divinetworks.com/2004/1 1/track#rameTypeDist 32,1,3,5 __:auth42

US 9,420,287 B2

9 10
TABLE 1-continued
Conceptual representation of ‘meta data’
Subject Predicate Object Authority
__track#dc00 http://xmlns.divknetworks.com/2004/1 1 /track#codecSettings bvl 276 -psy 0 -key 300 -b 1 - __:auth42

sc 50 -pq 5 -vbv
6951200,3145728,2359296 -
profile 3 -nf

In one embodiment, the expression of the subject, predi-
cate, object and authority is implemented using binary repre-
sentations of the data, which can be considered to form
Directed-Labeled Graphs (DLGs). A DLG consists of nodes
that are either resources or literals. Resources are identifiers,
which can either be conformant to a naming convention such
as a Universal Resource Identifier (“URI”) as defined in RFC
2396 by the Internet Engineering Taskforce (http://www.iet-
f.org/rfc/rfc2396.txt) or refer to data specific to the system
itself. Literals are representations of an actual value, rather
than a reference.

An advantage of DLGs is that they allow the inclusion of a
flexible number of items of data that are of the same type, such
as cast members of a movie. In the example shown in Table 1,
three cast members are included. However, any number of
cast members can be included. DLGs also allow relational
connections to other data types. In Table 1, there is a ‘meta
data’ item that has a subject “_:file281,” a predicate “Series,”
and an object “_:file321 The subject “_:file281” indicates
that the ‘meta data’ refers to the content of the file referenced
as “_:file321” (in this case, a movie—"“Movie Title 1”°). The
predicate is “Series,” indicating that the object will have
information about another movie in the series to which the
first movie belongs. However, “_:file321” is not the title or
any other specific information about the series, but rather a
reference to another entry that provides more information
about “_:file321”. The next ‘meta data’ entry, with the subject
«_:file321”, however, includes dataabout “_:file321,” namely
that the Title as specified by the Dublin Core Vocabulary as
indicated by “http://purl.org/dc/elements/1.1/title” of this
sequel is “Movie Title 2.

Additional ‘meta data’ statements in Table 1 specify that
“Actor 1” was a member of the cast playing the role of
“Character Name 1” and that there are two directors. Techni-
cal information is also expressed in the ‘meta data.” The ‘meta
data’statements identify that “_:file281” includes track
“_:track#dc00.” The ‘meta data’ provides information includ-
ing the resolution of the video track, the certification level of
the video track and the codec settings. Although not shown in
Table 1, the ‘meta data’ can also include a unique identifier
assigned to a track at the time of encoding. When unique
identifiers are used, encoding the same content multiple times
will result in a different identifier for each encoded version of
the content. However, a copy of the encoded video track
would retain the identifier of the track from which it was
copied.

The entries shown in Table 1 can be substituted with other
vocabularies such as the UPnP vocabulary, which is defined
by the UPnP forum (see http:/www.upnpforum.org).
Another alternative would be the Digital Item Declaration
Language (DIDL) or DIDL-Lite vocabularies developed by
the International Standards Organization as part of work
towards the MPEG-21 standard. The following are examples
of predicates within the UPnP vocabulary:

15

20

25

30

35

40

45

50

60

65

urn:schemas-upnp-org:metadata-1-0/upnp/artist
urn:schemas-upnp-org:metadata-1-0/upnp/actor
urn:schemas-upnp-org:metadata-1-0/upnp/author
urn:schemas-upnp-org:metadata-1-0/upnp/producer
urn:schemas-upnp-org:metadata-1-0/upnp/director
urn:schemas-upnp-org:metadata-1-0/upnp/genre
urn:schemas-upnp-org:metadata-1-0/upnp/album
urn:schemas-upnp-org:metadata-1-0/upnp/playlist
urn:schemas-upnp-org:metadata-1-0/upnp/original TrackNumber
urn:schemas-upnp-org:metadata-1-0/upnp/userAnnotation

The authority for all of the ‘meta data’is ‘_:auth42. ‘Meta
data’ statements show that _:auth42’ is ‘Studio Name.” The
authority enables the evaluation of both the quality of the file
and the ‘meta data’ statements associated with the file.

Nodes into a graph are connected via named resource
nodes. A statement of ‘meta data’ consist of a subject node, a
predicate node and an object node. Optionally, an authority
node can be connected to the DL.G as part of the ‘meta data’
statement.

For each node, there are certain characteristics that help
further explain the functionality of the node. The possible
types can be represented as follows using the ANSI C pro-
gramming language:

/** Invalid Type */

#define RDF__IDENTIFIER_ TYPE_ UNKNOWN 0x00
/** Resource URI rdf:about */

#define RDF__IDENTIFIER_TYPE_ RESOURCE 0x01
/** rdf:Nodeld, __:file or generated N-Triples */

#define RDF__IDENTIFIER_ TYPE_ ANONYMOUS 0x02
/** Predicate URI */

#define RDF__IDENTIFIER_TYPE_ PREDICATE 0x03
/4% pdfeli, rdft <n>

#define RDF__IDENTIFIER__TYPE_ ORDINAL 0x04
/** Authority URI */

#define RDF__IDENTIFIER_TYPE__AUTHORITY 0x05
/** UTF-8 formatted literal */

#define RDF__IDENTIFIER__TYPE_ LITERAL 0x06
/** Literal Integer */

#define RDF__IDENTIFIER_TYPE_INT 0x07
/** Literal XML data */

#define RDF__IDENTIFIER_TYPE_XML_ LITERAL 0x08

An example of a data structure (represented in the ANSI C
programming language) that represents the ‘meta data’
chunks contained within the ‘DXDT’ chunk is as follows:

typedef struct RDFDataStruct

RDFHeader Header;

uint32_t numOfStatements;

RDFStatement statements| RDF_MAX_STATEMENTS];
} RDFData;

The ‘RDFData’ chunk includes a chunk referred to as an
‘RDFHeader’ chunk, a value ‘numOfStatements’ and a list of
‘RDFStatement’ chunks.

US 9,420,287 B2

11
The ‘RDFHeader’ chunk contains information about the
manner in which the ‘meta data’ is formatted in the chunk. In
one embodiment, the data in the ‘RDFHeader’ chunk can be
represented as follows (represented in ANSI C):

typedef struct RDFHeaderStruct

{
uintlé_t versionMajor;
uintlé_t versionMinor;
uintlé_t versionFix;
uintlé_t numOfSchemas;
RDFSchema schemas[RDF_MAX_SCHEMAS];

} RDFHeader;

The ‘RDFHeader’ chunk includes a number ‘version’ that
indicates the version of the resource description format to
enable forward compatibility. The header includes a second
number ‘numOfSchemas’ that represents the number of
‘RDFSchema’ chunks in the list ‘schemas’, which also forms
part of the ‘RDFHeader’ chunk. In several embodiments, the
‘RDFSchema’ chunks are used to enable complex resources
to be represented more efficiently. In one embodiment, the
data contained in a ‘RDFSchema’ chunk can be represented
as follows (represented in ANSI C):

typedef struct RDFSchemaStruct
{
wchar_ t*
wchar_ t*
} RDFSchema;

prefix;
uri;

The ‘RDFSchema’ chunk includes a first string of text such
as ‘dc’ identified as ‘prefix’ and a second string of text such as
‘http://purl.org/dc/elements/1.1/° identified as “uri’. The “pre-
fix’ defines a term that can be used in the ‘meta data’ in place
ofthe “uri’. The ‘uri’ is a Universal Resource Identifier, which
can conform to a specified standardized vocabulary or be a
specific vocabulary to a particular system.

Returning to the discussion of the ‘RDFData’ chunk. In
addition to a ‘RDFHeader’ chunk, the ‘RDFData’ chunk also
includes a value ‘numOfStatements’ and a list ‘statement’ of
‘RDFStatement’ chunks. The value ‘numOfStatements’ indi-
cates the actual number of ‘RDFStatement’ chunks in the list
‘statements’ that contain information. In one embodiment,
the data contained in the ‘RDFStatement’ chunk can be rep-
resented as follows (represented in ANSI C):

typedef struct RDFStatementStruct

RDFSubject subject;
RDFPredicate predicate;
RDFObject object;
RDFAuthority authority;

} RDFStatement;

Each ‘RDFStatement’ chunk contains a piece of ‘meta
data’ concerning the multimedia file. The chunks ‘subject’,
‘predicate’, ‘object” and ‘authority’ are used to contain the
various components of the ‘meta data’ described above.

The ‘subject’ is a ‘RDFSubject’ chunk, which represents
the subject portion of the ‘meta data’ described above. In one
embodiment the data contained within the ‘RDFSubject’
chunk can be represented as follows (represented in ANSI C):

10

15

20

25

30

35

40

50

55

typedef struct RDFSubjectStruct
uintl6_t type;
wchar_ t* value;

} RDFSubject;

The ‘RDFSubject’ chunk shown above includes a value
‘type’ that indicates that the data is either a Resource or an
anonymous node of a piece of ‘meta data’ and a unicode text
string ‘value’, which contains data representing the subject of
the piece of ‘meta data’. In embodiments where an ‘RDF-
Schema’ chunk has been defined the value can be a defined
term instead of a direct reference to a resource.

The ‘predicate’ in a ‘RDFStatement’ chunk is a ‘RDF-
Predicate’ chunk, which represents the predicate portion of a
piece of ‘meta data’. In one embodiment the data contained
within a ‘RDFPredicate’ chunk can be represented as follows
(represented in ANSI C):

typedef struct RDFPredicateStruct

{
uintl6_t
wchar_t*
} RDFPredicate;

type;

value;

The ‘RDFPredicate’ chunk shown above includes a value
‘type’ that indicates that the data is the predicate URI or an
ordinal list entry of a piece of ‘meta data’ and a text string
‘value,” which contains data representing the predicate of a
piece of ‘meta data.’ In embodiments where an ‘RDFSchema’
chunk has been defined the value can be a defined term
instead of a direct reference to a resource.

The ‘object’ in a ‘RDFStatement’ chunk is a ‘RDFObject’
chunk, which represents the object portion of a piece of ‘meta
data.” In one embodiment, the data contained in the ‘RDFOb-
ject’ chunk can be represented as follows (represented in
ANSI C):

typedef struct RDFObjectStruct

uintl6_t type;
wchar_t* language;
wchar_t* dataTypeURI;
wchar_t* value;

} RDFObject;

The ‘RDFObject” chunk shown above includes a value
‘type’ that indicates that the piece of data is a UTF-8 literal
string, a literal integer or literal XML data of a piece of ‘meta
data.” The chunk also includes three values. The first value
‘language’ is used to represent the language in which the
piece of ‘meta data’ is expressed (e.g. a film’s title may vary
in different languages). In several embodiments, a standard
representation can be used to identify the language (such as
RFC 3066—Tags for the Identification of Languages speci-
fied by the Internet Engineering Task Force, see http://ww-
w.ietf.org/rfc/rfc3066.1xt). The second value ‘dataTypeURI’
is used to indicate the type of data that is contained within the
‘value’ field if it can not be explicitly indicated by the “type’
field. The URI specified by the dataTypeURI points to general
RDF URI Vocabulary used to describe the particular type of
the Data is used. Different formats in which the URI can be
expressed are described at http://www.w3.org/TR/rdf-con-
cepts/#section-Datatypes. In one embodiment, the ‘value’is a
‘wide character.” In other embodiments, the ‘value’ can be any

US 9,420,287 B2

13

of a variety of types of data from a single bit, to an image or
avideo sequence. The “value’ contains the object piece of the
‘meta data.’

The ‘authority’ in a ‘RDFStatement’ chunk is a ‘RDFAu-
thority’ chunk, which represents the authority portion of a
piece of ‘meta data.’ In one embodiment the data contained
within the ‘RDFAuthority’ chunk can be represented as fol-
lows (represented in ANSI C):

typedef struct RDFAuthority Struct
{
uintl6_t type;
wchar_ t* value;

} RDFAuthority;

The ‘RDFAuthority’ data structure shown above includes a
value ‘type’ that indicates the data is a Resource or an anony-
mous node of a piece of ‘meta data.” The “value’ contains the
data representing the authority for the ‘meta data.” In embodi-
ments where an ‘RDFSchema’ chunk has been defined the
value can be a defined term instead of a direct reference to a
resource.

A conceptual representation of the storage of a ‘DXDT’
chunk of a multimedia file in accordance with an embodiment
of the present invention is shown in FIG. 2.3. The ‘DXDT’
chunk 38 includes an ‘RDFHeader’ chunk 110, a ‘numOf-
Statements’ value 112 and a list of RDFStatement chunks
114. The RDFHeader chunk 110 includes a ‘version’ value
116, a ‘numOfSchemas’ value 118 and a list of ‘Schema’
chunks 120. Each ‘RDFStatement’ chunk 114 includes a
‘RDFSubject’ chunk 122, a ‘RDFPredicate’ chunk 124, a
‘RDFObject’ chunk 126 and a ‘RDFAuthority’ chunk 128.
The ‘RDFSubject’ chunk includes a ‘type’ value 130 and a
‘value’ value 132. The ‘RDFPredicate’ chunk 124 also
includes a ‘type’ value 134 and a ‘value’ value 136. The
‘RDFObject’ chunk 126 includes a ‘type’ value 138, a ‘lan-
guage’ value 140 (shown in the figure as ‘lang’), a
‘dataTypeURI’ value 142 (shown in the figure as ‘dataT’) and
a “value’ value 144. The ‘RDFAuthority’chunk 128 includes
a ‘type’ value 146 and a ‘value’ value 148. Although the
illustrated ‘DXDT’ chunk is shown as including a single
‘Schema’ chunk and a single ‘RDFStatement’ chunk, one of
ordinary skill in the art will readily appreciate that different
numbers of ‘Schema’ chunks and ‘RDFStatement’ chunks
can be used in a chunk that describes ‘meta data.’

Asis discussed below, multimedia files in accordance with
embodiments of the present invention can be continuously
modified and updated. Determining in advance the ‘meta
data’ to associate with the file itself and the ‘meta data’ to
access remotely (e.g. via the internet) can be difficult. Typi-
cally, sufficient ‘meta data’ is contained within a multimedia
file in accordance with an embodiment of the present inven-
tion in order to describe the contents of the file. Additional
information can be obtained if the device reviewing the file is
capable of accessing via a network other devices containing
‘meta data’ referenced from within the file.

The methods of representing ‘meta data’ described above
can be extendable and can provide the ability to add and
remove different ‘meta data’ fields stored within the file as the
need for it changes over time. In addition, the representation
of ‘meta data’ can be forward compatible between revisions.

The structured manner in which ‘meta data’ is represented
in accordance with embodiments of the present invention
enables devices to query the multimedia file to better deter-
mine its contents. The query could then be used to update the
contents of the multimedia file, to obtain additional ‘meta

10

15

20

25

30

35

40

45

50

55

60

65

14

data’ concerning the multimedia file, generate a menu relating
to the contents of the file or perform any other function
involving the automatic processing of data represented in a
standard format. In addition, defining the length of each
parseable element of the ‘meta data’ can increase the ease
with which devices with limited amounts of memory, such as
consumer electronics devices, can access the ‘meta data’.

In other embodiments, the ‘meta data’ is represented using
individual chunks for each piece of ‘meta data.’ Several
‘DXDT’ chunks in accordance with the present invention
include a binary chunk containing ‘meta data’ encoded as
described above and additional chunks containing individual
pieces of ‘meta data’ formatted either as described above or in
another format. In embodiments where binary ‘meta data’ is
included in the ‘DXDT’ chunk, the binary ‘meta data’ can be
represented using 64-bit encoded ASCII. In other embodi-
ments, other binary representations can be used.

Examples of individual chunks that can be included in the
‘DXDT’ chunk in accordance with the present invention are
illustrated in FIG. 2.3.1. The ‘meta data’ includes a ‘Meta-
Data’ chunk 150 that can contain a ‘Pixel AspectRatioMeta-
Data’ chunk 1524, an ‘EncoderURIMetaData’ chunk 1525, a
‘CodecSettingsMetaData’ chunk 152¢, a ‘FrameTypeMeta-
Data’ chunk 152d, a ‘VideoResolutionMetaData’ chunk
152¢, a ‘PublisherMetaData’ chunk 152f, a ‘CreatorMeta-
Data’ chunk 152g, a ‘GenreMetaData’ chunk 152/, a ‘Cre-
atorToolMetaData’ chunk 152/, a ‘RightsMetaData’ chunk
152/, a ‘RunTimeMetaData’ chunk 1524, a ‘QuantizerMeta-
Data’ chunk 152/, a ‘CodecInfoMetaData’ chunk 152m, a
‘EncoderNameMetaData’ chunk 1527, a ‘FrameRateMeta-
Data’ chunk 1520, a ‘InputSourceMetaData’ chunk 152p, a
‘FilelDMetaData’ chunk 152¢, a “TypeMetaData’ chunk
1527, a ‘TitleMetaData’ chunk 152s and/or a ‘CertLevel-
MetaData’ chunk 152¢.

The ‘PixelAspectRatioMetaData’ chunk 152a includes
information concerning the pixel aspect ratio of the encoded
video. The ‘EncoderURIMetaData’ chunk 1524 includes
information concerning the encoder. The ‘CodecSettings-
MetaData’ chunk 152¢ includes information concerning the
settings of the codec used to encode the video. The ‘Frame-
TypeMetaData’ chunk 152d includes information concerning
the video frames. The ‘VideoResolutionMetaData’ chunk
152¢ includes information concerning the video resolution of
the encoded video. The ‘PublisherMetaData’ chunk 152f
includes information concerning the person or organization
that published the media. The ‘CreatorMetaData’ chunk 152¢g
includes information concerning the creator of the content.
The ‘GenreMetaData’ chunk 152/ includes information con-
cerning the genre of the media. The ‘CreatorToolMetaData’
chunk 152/ includes information concerning the tool used to
create the file. The ‘RightsMetaData’ chunk 152; includes
information concerning DRM. The ‘RunTimeMetaData’
chunk 152% includes information concerning the run time of
the media. The ‘QuantizerMetaData’ chunk 152/ includes
information concerning the quantizer used to encode the
video. The ‘CodecInfoMetaData’ chunk 152m includes infor-
mation concerning the codec. The ‘EncoderNameMetaData’
chunk 1527 includes information concerning the name of the
encoder. The ‘FrameRateMetaData’ chunk 1520 includes
information concerning the frame rate of the media. The
‘InputSourceMetaData’ chunk 152p includes information
concerning the input source. The ‘FilelDMetaData’ chunk
1524 includes a unique identifier for the file. The ‘TypeMeta-
Data’ chunk 152~ includes information concerning the type of
the multimedia file. The ‘TitleMetaData’ chunk 152s includes
the title of the media and the ‘CertLevelMetaData’ chunk
152¢ includes information concerning the certification level

US 9,420,287 B2

15

ofthe media. In other embodiments, additional chunks can be
included that contain additional ‘meta data’ In several
embodiments, a chunk containing ‘meta data’ in a binary
format as described above can be included within the ‘Meta-
Data’ chunk. In one embodiment, the chunk of binary ‘meta
data’ is encoded as 64-bit ASCII.

2.4.1. The ‘Index’ Chunk

In one embodiment, the ‘DXDT” chunk can include an
‘index’ chunk that can be used to index ‘data’ chunks in the
‘movi’ list chunk 42 corresponding to specific frames in a
sequence of encoded video (the ‘movi’ list chunk is discussed
further below). The ‘index’ chunk can be differentiated from
the ‘idx1’ chunk on the basis that the ‘index’ chunk does not
include information concerning every ‘data’ chunk in the
‘movi’ list chunk. Typically, the ‘index’ chunk includes infor-
mation concerning a subset of the ‘data’ chunks. Appropriate
selection of the ‘data’ chunks referenced in the ‘index’ chunk
can enable rapid location of a specific video frame.

Anembodiment of an ‘index’ chunk in accordance with the
present invention is shown in FIG. 2.3.2. The ‘index’ chunk
153 includes a list of ‘tag’ chunks 154. In many embodiments,
each ‘tag’ chunk 154 contains information that can be used to
locate a particular encoded frame of video within a multime-
dia file. In several embodiments, ‘tag’ chunks reference
encoded video frames that are approximately evenly spaced
throughout a sequence of encoded video frames. In one
embodiment, the list of ‘tag’ chunks references frames that
are spaced at least ten seconds apart. In another embodiments,
the ‘tag’ chunks reference frames that are spaced at least five
seconds apart. In a further embodiment, the list of ‘tag’
chunks references frames that are spaced at least one second
apart. In numerous embodiments, the ‘tag’ chunks reference
frames that are spaced approximately evenly with respect to
the bits in the multimedia file or ‘movi’ list chunk. In many
embodiments, ‘tag’ chunks are used to identify frames that
are the start of specific scenes and/or chapters within a
sequence of video frames. In many embodiments, the ‘index’
chunk includes a distinct fource code such as “idxx”.

In the illustrated embodiment, each ‘tag’ chunk 154
includes information that can be used to reference a specific
encoded video frame and the portions of one or more audio
tracks that accompany the encoded video frame. The infor-
mation includes information concerning a chunk offset 155a,
information concerning an index offset 15554, information
identifying a video frame 155¢ and information identifying a
portion of an audio track 1554.

In many embodiments, the chunk offset 1554 can be used
to locate the ‘data’ chunks within the multimedia file corre-
sponding to the particular encoded video frame and/or
accompanying audio track(s) referenced by the ‘tag’ chunk.
In one embodiment, the chunk offset is the location of the
relevant ‘data’ chunk relative to the start of the ‘movi’ list
chunk.

In many embodiments, the index offset 1555 can be used to
locate information about a particular video frame in the ‘idx1’
chunk. In one embodiment, the index offset 1555 is the loca-
tion of the relevant piece of information relative to the begin-
ning of the ‘idx1’ chunk.

The information identifying the video frame 155¢ desig-
nates the position of the encoded video frame referenced by
the ‘tag’ chunk within a sequence of encoded video frames. In
one embodiment, the information 155¢ can simply be an
integer indicating a frame number in a sequence of encoded
video frames. In other embodiments, other information
indicative of the position of the encoded video frame refer-
enced by the ‘tag’ chunk within the video sequence can be
used.

10

15

20

25

30

35

40

45

50

55

60

65

16

In many embodiments, the information identifying a por-
tion of an audio track 1554 references a specific section of an
audio track. In several embodiments, the identified section
corresponds to the portion of a soundtrack that accompanies
the encoded video frame referenced by the ‘tag’ chunk. In
embodiments where there are multiple audio tracks, the infor-
mation identifying a portion of an audio track 1554 can in fact
include multiple pieces of information capable of referencing
sections within each of the multiple audio tracks. In many
embodiments, the sections identified by the multiple pieces of
information correspond to the portion of each sound track that
accompanies an encoded video frame referenced by the ‘tag’
chunk.

In many embodiments of ‘tag’ chunks in accordance with
the present invention, various pieces of information are used
to identify the ‘data’ chunk within a multimedia file corre-
sponding to a specific encoded video frame. In addition,
various types of information can be used to identify portions
of'audio and subtitle tracks that accompany an encoded video
frame. In several embodiments, at least some of the ‘tag’
chunks in an ‘index’ chunk reference a portion of an audio
track and do not reference an encoded video frame.

Including a chunk containing index information before the
‘movi’ list chunk can enable a device to start playing and
performing other functions, such as fast forward, rewind and
scene skipping, prior to the downloading of the ‘idx1’ chunk.
In one embodiment, the ‘index’ chunk is included in a chunk
other than the ‘DXDT’ chunk preceding the ‘movi’ list chunk
(e.g. the junk chunk). In other embodiments, the ‘index’
chunk is not located within the ‘junk’ chunk. In several
embodiments, the ‘index’ chunk is a separate chunk. In one
embodiment, the ‘index’ chunk is located after the ‘movi’ list
chunk.

2.5. The ‘DMNU” Chunks

Referring to FIGS. 2.0. and 2.0.1., a first ‘DMNU’ chunk
40 (40" and a second ‘DMNU” chunk 46 (46') are shown. In
FIG. 2.0. the second ‘DMNU” chunk 46 forms part of the
multimedia file 30. In the embodiment illustrated in FIG.
2.0.1., the ‘DMNU’ chunk 46' is contained within a separate
RIFF chunk. In both instances, the first and second DMNU'
chunks contain data that can be used to display navigable
menus. In one embodiment, the first ‘DMNU’ chunk 40 (40")
contains data that can be used to create a simple menu that
does not include advanced features such as extended back-
ground animations. In addition, the second ‘DMNU” chunk
46 (46" includes data that can be used to create a more
complex menu including such advanced features as an
extended animated background.

The ability to provide a so-called ‘lite’ menu can be useful
for consumer electronics devices that cannot process the
amounts of data required for more sophisticated menu sys-
tems. Providing a menu (whether ‘lite’ or otherwise) prior to
the ‘movi’ list chunk 42 can reduce delays when playing
embodiments of multimedia files in accordance with the
present invention in streaming or progressive download
applications. In several embodiments, providing a simple and
a complex menu can enable a device to choose the menu that
it wishes to display. Placing the smaller of the two menus
before the ‘movi’ list chunk 42 enables devices in accordance
with embodiments of the present invention that cannot dis-
play menus to rapidly skip over information that cannot be
displayed.

In other embodiments, the data required to create a single
menu is split between the first and second ‘DMNU” chunks.
Alternatively, the ‘DMNU” chunk can be a single chunk
before the ‘movi’ chunk containing data for a single set of
menus or multiple sets of menus. In other embodiments, the

US 9,420,287 B2

17
‘DMNU” chunk can be a single or multiple chunks located in
other locations throughout the multimedia file.

In several multimedia files in accordance with the present
invention, the first ‘DMNU’ chunk 40 (40') can be automati-
cally generated based on a ‘richer’ menu in the second
‘DMNU” chunk 46 (46'). The automatic generation of menus
is discussed in greater detail below.

The structure of a ‘DMNU’ chunk in accordance with an
embodiment of the present invention is shown in FIG. 2.4.
The ‘DMNU’ chunk 158 is a list chunk that contains a menu
chunk 160 and an ‘MRIF’ chunk 162. The menu chunk con-
tains the information necessary to construct and navigate
through the menus. The ‘MRIF’ chunk contains media infor-
mation that can be used to provide subtitles, background
video and background audio to the menus. In several embodi-
ments, the ‘DMNU’ chunk contains menu information
enabling the display of menus in several different languages.

In one embodiment, the ‘WowMenu’ chunk 160 contains
the hierarchy of menu chunk objects that are conceptually
illustrated in FIG. 2.5. At the top of the hierarchy is the
WowMenuManager chunk 170. The WowMenuManager
chunk can contain one or more ‘LanguageMenus’ chunks 172
and one ‘Media’ chunk 174.

Use of ‘LanguageMenus’ chunks 172 enables the ‘DMNU”
chunk 158 to contain menu information in different lan-
guages. Each ‘LanguageMenus’ chunk 172 contains the
information used to generate a complete set of menus in a
specified language. Therefore, the ‘LanguageMenus’ chunk
includes an identifier that identifies the language of the infor-
mation associated with the ‘LanguageMenus’ chunk. The
‘LanguageMenus’ chunk also includes a list of “WowMenu’
chunks 175.

Each ‘WowMenu’ chunk 175 contains all of the informa-
tion to be displayed on the screen for a particular menu. This
information can include background video and audio. The
information can also include data concerning button actions
that can be used to access other menus or to exit the menu and
commence displaying a portion of the multimedia file. In one
embodiment, the ‘“WowMenu’ chunk 175 includes a list of
references to media. These references refer to information
contained in the ‘Media’ chunk 174, which will be discussed
further below. The references to media can define the back-
ground video and background audio for a menu. The ‘Wow-
Menu’ chunk 175 also defines an overlay that can be used to
highlight a specific button, when a menu is first accessed.

In addition, each ‘WowMenu’ chunk 175 includes a num-
ber of ‘ButtonMenu’ chunks 176. Each ‘ButtonMenu’ chunk
defines the properties of an onscreen button. The ‘Button-
Menu’ chunk can describe such things as the overlay to use
when the button is highlighted by the user, the name of the
button and what to do in response to various actions per-
formed by a user navigating through the menu. The responses
to actions are defined by referencing an ‘Action’ chunk 178. A
single action, e.g. selecting a button, can result in several
‘Action’ chunks being accessed. In embodiments where the
user is capable of interacting with the menu using a device
such as a mouse that enables an on-screen pointer to move
around the display in an unconstrained manner, the on-screen
location of the buttons can be defined using a ‘MenuRect-
angle’ chunk 180. Knowledge of the on-screen location of the
button enables a system to determine whether a user is select-
ing a button, when using a free ranging input device.

Each ‘Action’ chunk identifies one or more of a number of
different varieties of action related chunks, which can include
a ‘PlayAction’ chunk 182, a ‘MenuTransitionAction’ chunk
184, a ‘ReturnToPlayAction’ chunk 186, an ‘AudioSelectAc-
tion’ chunk 188, a ‘SubtitileSelectAction’ chunk 190 and a

10

15

20

25

30

35

40

45

50

55

60

65

18

‘ButtonTransitionAction’ chunk 191. A ‘PlayAction’ chunk
182 identifies a portion of each of the video, audio and subtitle
tracks within a multimedia file. The ‘PlayAction’ chunk ref-
erences a portion of the video track using a reference to a
‘MediaTrack’ chunk (see discussion below). The ‘PlayAc-
tion’ chunk identifies audio and subtitle tracks using ‘Sub-
titleTrack’ 192 and ‘AudioTrack’ 194 chunks. The ‘Subtitle-
Track’ and ‘AudioTrack’ chunks both contain references to a
‘MediaTrack’ chunk 198. When a ‘PlayAction’ chunk forms
the basis of an action in accordance with embodiments of the
present invention, the audio and subtitle tracks that are
selected are determined by the values of variables set initially
as defaults and then potentially modified by a user’s interac-
tions with the menu.

Each ‘MenuTransitionAction’ chunk 184 contains a refer-
ence to a ‘“WowMenu’ chunk 175. This reference can be used
to obtain information to transistion to and display another
menu.

Each ‘ReturnToPlayAction’ chunk 186 contains informa-
tion enabling a player to return to a portion of the multimedia
file that was being accessed prior to the user bringing up a
menu.

Each ‘AudioSelectAction’ chunk 188 contains information
that can be used to select a particular audio track. In one
embodiment, the audio track is selected from audio tracks
contained within a multimedia file in accordance with an
embodiment of the present invention. In other embodiments,
the audio track can be located in an externally referenced file.

Each ‘SubtitleSelectAction’ chunk 190 contains informa-
tion that can be used to select a particular subtitle track. In one
embodiment, the subtitle track is selected from a subtitle
contained within a multimedia file in accordance with an
embodiment of the present invention. In other embodiments,
the subtitle track can be located in an externally referenced
file.

Each ‘ButtonTransitionAction’ chunk 191 contains infor-
mation that can be used to transition to another button in the
same menu. This is performed after other actions associated
with a button have been performed.

The ‘Media’ chunk 174 includes a number of ‘Media-
Source’ chunks 166 and ‘MediaTrack’ chunks 198. The
‘Media’ chunk defines all of the multimedia tracks (e.g.,
audio, video, subtitle) used by the feature and the menu sys-
tem. Each ‘MediaSource’ chunk 196 identifies a RIFF chunk
within the multimedia file in accordance with an embodiment
of the present invention, which, in turn, can include multiple
RIFF chunks.

Each ‘MediaTrack’ chunk 198 identifies a portion of a
multimedia track within a RIFF chunk specified by a ‘Media-
Source’ chunk.

The ‘MRIF’ chunk 162 is, essentially, its own small mul-
timedia file that complies with the RIFF format. The ‘MRIF’
chunk contains audio, video and subtitle tracks that can be
used to provide background audio and video and overlays for
menus. The ‘MRIF’ chunk can also contain video to be used
as overlays to indicate highlighted menu buttons. In embodi-
ments where less menu data is required, the background video
can be a still frame (a variation of the AVI format) or a small
sequence of identical frames. In other embodiments, more
elaborate sequences of video can be used to provide the
background video.

As discussed above, the various chunks that form part of a
‘WowMenu’ chunk 175 and the ‘WowMenu’ chunk itself
contain references to actual media tracks. Each of these ref-
erences is typically to a media track defined in the ‘hdrl’ LIST
chunk of a RIFF chunk.

US 9,420,287 B2

19

Other chunks that can be used to create a ‘DMNU’ chunk in
accordance with the present invention are shown in FIG. 2.6.
The ‘DMNU’ chunk includes a WowMenuManager chunk
170'. The WowMenuManager chunk 170' can contain at least
one ‘LanguageMenus’ chunk 172', at least one ‘Media’ chunk
174' and at least one ‘TranslationTable’ chunk 200.

The contents of the ‘LanguageMenus’ chunk 172 is largely
similar to that of the ‘LanguageMenus’ chunk 172 illustrated
in FIG. 2.5. The main difference is that the ‘PlayAction’
chunk 182' does not contain ‘SubtitleTrack’ chunks 192 and
‘AudioTrack’ chunks 194.

The ‘Media’ chunk 174' is significantly different from the
‘Media’ chunk 174 shown in FIG. 2.5. The ‘Media’ chunk
174' contains at least one ‘Title’ chunk 202 and at least one
‘MenuTracks’ chunk 204. The ‘Title’ chunk refers to a title
within the multimedia file. As discussed above, multimedia
files in accordance with embodiments of the present invention
can include more than one title (e.g. multiple episodes in a
television series, a related series of full length features or
simply a selection of different features). The ‘MenuTracks’
chunk 204 contains information concerning media informa-
tion that is used to create a menu display and the audio
soundtrack and subtitles accompanying the display.

The “Title’ chunk can contain at least one ‘Chapter’ chunk
206. The ‘Chapter’ chunk 206 references a scene within a
particular title. The ‘Chapter’ chunk 206 contains references
to the portions of the video track, each audio track and each
subtitle track that correspond to the scene indicated by the
‘Chapter’ chunk. In one embodiment, the references are
implemented using ‘MediaSource’ chunks 196' and ‘Medi-
aTrack’ chunks 198' similar to those described above in rela-
tion to FIG. 2.5. In several embodiments, a ‘MediaTrack’
chunk references the appropriate portion of the video track
and a number of additional ‘MediaTrack’ chunks each refer-
ence one of the audio tracks or subtitle tracks. In one embodi-
ment, all of the audio tracks and subtitle tracks corresponding
to a particular video track are referenced using separate
‘MediaTrack’ chunks.

As described above, the ‘MenuTracks’ chunks 204 contain
references to the media that are used to generate the audio,
video and overlay media of the menus. In one embodiment,
the references to the media information are made using
‘MediaSource’ chunks 196' and ‘MediaTrack’ chunks 198'
contained within the ‘MenuTracks’ chunk. In one embodi-
ment, the ‘MediaSource’ chunks 196' and ‘MediaTrack’
chunks 198' are implemented in the manner described above
in relation to FIG. 2.5.

The “TranslationTable’ chunk 200 can be used to contain
text strings describing each title and chapter in a variety of
languages. In one embodiment, the ‘TranslationTable’ chunk
200 includes at least one ‘Translationl.ookup’ chunk 208.
Each ‘Translationl.ookup’ chunk 208 is associated with a
‘Title’ chunk 202, a ‘Chapter’ chunk 206 or a ‘MediaTrack’
chunk 196' and contains a number of “Translation’ chunks
210. Each of the ‘Translation’ chunks in a ‘Translation-
Lookup’ chunk contains a text string that describes the chunk
associated with the ‘Translationl.ookup’ chunk in a language
indicated by the “Translation’ chunk.

A diagram conceptually illustrating the relationships
between the various chunks contained within a ‘DMNU”
chunk is illustrated in FIG. 2.6.1. The figure shows the con-
tainment of one chunk by another chunk using a solid arrow.
The direction in which the arrow points indicates the chunk
contained by the chunk from which the arrow originates.
References by one chunk to another chunk are indicated by a
dashed line, where the referenced chunk is indicated by the
dashed arrow.

10

15

20

25

30

35

40

45

50

55

60

65

20
2.6. The ‘Junk’ Chunk

The ‘junk’ chunk 41 is an optional chunk that can be
included in multimedia files in accordance with embodiments
of the present invention. The nature of the ‘junk’ chunk is
specified in the AVI file format.

2.7. The ‘Movi’ List Chunk

The ‘movi’ list chunk 42 contains a number of ‘data’
chunks. Examples of information that ‘data’ chunks can con-
tain are audio, video or subtitle data. In one embodiment, the
‘movi’ list chunk includes data for at least one video track,
multiple audio tracks and multiple subtitle tracks.

The interleaving of ‘data’ chunks in the ‘movi’ list chunk
42 of a multimedia file containing a video track, three audio
tracks and three subtitle tracks is illustrated in FIG. 2.7. For
convenience sake, a ‘data’ chunk containing video will be
described as a “video’ chunk, a ‘data’ chunk containing audio
will be referred to as an ‘audio’ chunk and a ‘data’ chunk
containing subtitles will be referenced as a ‘subtitle’ chunk. In
the illustrated ‘movi’ list chunk 42, each ‘video’ chunk 262 is
separated from the next ‘video’ chunk by ‘audio’chunks 264
from each of the audio tracks. In several embodiments, the
‘audio’ chunks contain the portion of the audio track corre-
sponding to the portion of video contained in the ‘video’
chunk following the ‘audio’ chunk.

Adjacent ‘video’ chunks may also be separated by one or
more ‘subtitle’ chunks 266 from one of the subtitle tracks. In
one embodiment, the ‘subtitle’ chunk 266 includes a subtitle
and a start time and a stop time. In several embodiments, the
‘subtitle’ chunk is interleaved in the ‘movi’ list chunk such
that the ‘video’ chunk following the ‘subtitle’ chunk includes
the portion of video that occurs at the start time of the subtitle.
In other embodiments, the start time of all ‘subtitle’ and
‘audio’ chunks is ahead of the equivalent start time of the
video. In one embodiment, the ‘audio” and ‘subtitle’ chunks
can be placed within 5 seconds of the corresponding ‘video’
chunk and in other embodiments the ‘audio’ and ‘subtitle’
chunks can be placed within a time related to the amount of
video capable of being buffered by a device capable of dis-
playing the audio and video within the file.

In one embodiment, the ‘data’ chunks include a
‘FOURCC’ code to identify the stream to which the ‘data’
chunk belongs. The ‘FOURCC’ code consists of a two-digit
stream number followed by a two-character code that defines
the type of information in the chunk. An alternate ‘FOURCC’
code consists of a two-character code that defines the type of
information in the chunk followed by the two-digit stream
number. Examples of the two-character code are shown in the
following table:

TABLE 2

Selected two-character codes used in FOURCC codes

Two-character code Description

db Uncompressed video frame

de Compressed video frame

dd DRM key info for the video frame
pc Palette change

wb Audio data

st Subtitle (text mode)

sb Subtitle (bitmap mode)

ch Chapter

In one embodiment, the structure of the “video’ chunks 262
and ‘audio’ chunks 264 complies with the AVI file format. In
other embodiments, other formats for the chunks can be used
that specify the nature of the media and contain the encoded
media.

US 9,420,287 B2

21

In several embodiments, the data contained within a ‘sub-
title’ chunk 266 can be represented as follows:

typedef struct _subtitlechunk {
FOURCC fec;
DWORD cb;
STR duration;
STR subtitle;

} SUBTITLECHUNK;

The value ‘fce’ is the FOURCC code that indicates the
subtitle track and nature of the subtitle track (text or bitmap
mode). The value ‘cb’ specifies the size of the structure. The
value ‘duration’ specifies the time at the starting and ending
point of the subtitle. In one embodiment, it can be in the form
hh:mm:ss.xxx-hh:mm:ss.xxx. The hh represent the hours,
mm the minutes, ss the seconds and xxx the milliseconds. The
value ‘subtitle’ contains either the Unicode text of the subtitle
in text mode or a bitmap image of the subtitle in the bitmap
mode. Several embodiments of the present invention use
compressed bitmap images to represent the subtitle informa-
tion. In one embodiment, the ‘subtitle’ field contains infor-
mation concerning the width, height and onscreen position of
the subtitle. In addition, the ‘subtitle’ field can also contain
color information and the actual pixels of the bit map. In
several embodiments, run length coding is used to reduce the
amount of pixel information required to represent the bitmap.

Multimedia files in accordance with embodiments of the
present invention can include digital rights management. This
information can be used in video on demand applications.
Multimedia files that are protected by digital rights manage-
ment can only be played back correctly on a player that has
been granted the specific right of playback. In one embodi-
ment, the fact that a track is protected by digital rights man-
agement can be indicated in the information about the track in
the “hdrl’ list chunk (see description above). A multimedia file
in accordance with an embodiment of the present invention
that includes a track protected by digital rights management
can also contain information about the digital rights manage-
ment in the ‘movi’ list chunk.

A ‘movi’ list chunk of a multimedia file in accordance with
an embodiment of the present invention that includes a video
track, multiple audio tracks, at least one subtitle track and
information enabling digital rights management is illustrated
in FIG. 2.8. The ‘movi’ list chunk 42' is similar to the ‘movi’
list chunk shown in FIG. 2.7. with the addition of a ‘DRM’
chunk 270 prior to each video chunk 262'. The ‘DRM’ chunks
270 are ‘data’ chunks that contain digital rights management
information, which can be identified by a FOURCC code
‘andd’. The first two characters ‘nn’ refer to the track number
and the second two characters are ‘dd’ to signify that the
chunk contains digital rights management information. In
one embodiment, the ‘DRM’ chunk 270 provides the digital
rights management information for the ‘video’ chunk 262
following the ‘DRM’ chunk. A device attempting to play the
digital rights management protected video track uses the
information in the ‘DRM’ chunk to decode the video infor-
mation in the ‘video’ chunk. Typically, the absence of a
‘DRM’ chunk before a ‘video’ chunk is interpreted as mean-
ing that the ‘video’ chunk is unprotected.

In an encryption system in accordance with an embodi-
ment of the present invention, the video chunks are only
partially encrypted. Where partial encryption is used, the
‘DRM’ chunks contain a reference to the portion of a “video’
chunk that is encrypted and a reference to the key that can be
used to decrypt the encrypted portion. The decryption keys

10

30

35

40

45

55

22

can be located in a ‘DRM” header, which is part of the “strd’
chunk (see description above). The decryption keys are
scrambled and encrypted with a master key. The ‘DRM’
header also contains information identifying the master key.

A conceptual representation of the information in a ‘DRM”’
chunk is shown in FIG. 2.9. The ‘DRM’ chunk 270 can
include a ‘frame’ value 280, a ‘status’ value 282, an ‘offset’
value 284, a ‘number’ value 286 and a ‘key’ value 288. The
‘frame’ value can be used to reference the encrypted frame of
video. The ‘status’ value can be used to indicate whether the
frame is encrypted, the ‘offset’ value 284 points to the start of
the encrypted block within the frame and the ‘number’ value
286 indicates the number of encrypted bytes in the block. The
‘key’ value 288 references the decryption key that can be used
to decrypt the block.

2.8. The ‘Idx1’ Chunk

The “idx1’ chunk 44 is an optional chunk that can be used
to index the ‘data’ chunks in the ‘movi’ list chunk 42. In one
embodiment, the ‘idx1’ chunk can be implemented as speci-
fied in the AVI format. In other embodiments, the ‘idx1’
chunk can be implemented using data structures that refer-
ence the location within the file of each of the ‘data’ chunks in
the ‘movi’ list chunk. In several embodiments, the ‘idx1’
chunk identifies each ‘data’ chunk by the track number of the
data and the type of the data. The FOURCC codes referred to
above can be used for this purpose.

3. Encoding a Multimedia File

Embodiments of the present invention can be used to gen-
erate multimedia files in a number of ways. In one instance,
systems in accordance with embodiments of the present
invention can generate multimedia files from files containing
separate video tracks, audio tracks and subtitle tracks. In such
instances, other information such as menu information and
‘meta data’ can be authored and inserted into the file.

Other systems in accordance with embodiments of the
present invention can be used to extract information from a
number of files and author a single multimedia file in accor-
dance with an embodiment of the present invention. Where a
CD-R is the initial source of the information, systems in
accordance with embodiments of the present invention can
use a codec to obtain greater compression and can re-chunk
the audio so that the audio chunks correspond to the video
chunks in the newly created multimedia file. In addition, any
menu information in the CD-R can be parsed and used to
generate menu information included in the multimedia file.

Other embodiments can generate a new multimedia file by
adding additional content to an existing multimedia file in
accordance with an embodiment of the present invention. An
example of adding additional content would be to add an
additional audio track to the file such as an audio track con-
taining commentary (e.g. director’s comments, after-created
narrative of a vacation video). The additional audio track
information interleaved into the multimedia file could also be
accompanied by a modification of the menu information in
the multimedia file to enable the playing of the new audio
track.

3.1. Generation Using Stored Data Tracks

A system in accordance with an embodiment of the present
invention for generating a multimedia file is illustrated in
FIG. 3.0. The main component of the system 350 is the
interleaver 352. The interleaver receives chunks of informa-
tion and interleaves them to create a multimedia file in accor-
dance with an embodiment of the present invention in the
format described above. The interleaver also receives infor-
mation concerning ‘meta data’ from a meta data manager 354.
The interleaver outputs a multimedia file in accordance with
embodiments of the present invention to a storage device 356.

US 9,420,287 B2

23

Typically the chunks provided to the interleaver are stored
on a storage device. In several embodiments, all of the chunks
are stored on the same storage device. In other embodiments,
the chunks may be provided to the interleaver from a variety
of' storage devices or generated and provided to the interleaver
in real time.

In the embodiment illustrated in FIG. 3.0., the ‘DMNU”
chunk 358 and the ‘DXDT’ chunk 360 have already been
generated and are stored on storage devices. The video source
362 is stored on a storage device and is decoded using a video
decoder 364 and then encoded using a video encoder 366 to
generate a ‘video’ chunk. The audio sources 368 are also
stored on storage devices. Audio chunks are generated by
decoding the audio source using an audio decoder 370 and
then encoding the decoded audio using an audio encoder 372.
‘Subtitle’ chunks are generated from text subtitles 374 stored
on a storage device. The subtitles are provided to a first
transcoder 376, which converts any of a number of subtitle
formats into a raw bitmap format. In one embodiment, the
stored subtitle format can be a format such as SRT, SUB or
SSA. In addition, the bitmap format can be that of a four bit
bitmap including a color palette look-up table. The color
palette look-up table includes a 24 bit color depth identifica-
tion for each of the sixteen possible four bit color codes. A
single multimedia file can include more than one color palette
look-up table (see “pc” palette FOURCC code in Table 2
above). The four bit bitmap thus allows each menu to have 16
different simultaneous colors taken from a palette of 16 mil-
lion colors. In alternative embodiments different numbers of
bit per pixel and different color depths are used. The output of
the first transcoder 376 is provided to a second transcoder
378, which compresses the bitmap. In one embodiment run
length coding is used to compress the bitmap. In other
embodiments, other suitable compression formats are used.

In one embodiment, the interfaces between the various
encoders, decoder and transcoders conform with Direct Show
standards specified by Microsoft Corporation. In other
embodiments, the software used to perform the encoding,
decoding and transcoding need not comply with such stan-
dards.

In the illustrated embodiment, separate processing compo-
nents are shown for each media source. In other embodiments
resources can be shared. For example, a single audio decoder
and audio encoder could be used to generate audio chunks
from all of the sources. Typically, the entire system can be
implemented on a computer using software and connected to
a storage device such as a hard disk drive.

In order to utilize the interleaver in the manner described
above, the ‘DMNU” chunk, the ‘DXDT’ chunk, the ‘video’
chunks, the ‘audio’ chunks and the ‘subtitle’ chunks in accor-
dance with embodiments of the present invention must be
generated and provided to the interleaver. The process of
generating each of the various chunks in a multimedia file in
accordance with an embodiment of the present invention is
discussed in greater detail below.

3.2. Generating a ‘DXDT’ Chunk

The ‘DXDT’ chunk can be generated in any of a number of
ways. In one embodiment, ‘meta data’ is entered into data
structures via a graphical user interface and then parsed into
a ‘DXDT’ chunk. In one embodiment, the ‘meta data’ is
expressed as series of subject, predicate, object and authority
statements. In another embodiment, the ‘meta data’ state-
ments are expressed in any of a variety of formats. In several
embodiments, each ‘meta data’ statement is parsed into a
separate chunk. In other embodiments, several ‘meta data’
statements in a first format (such as subject, predicate, object,
authority expressions) are parsed into a first chunk and other

20

40

45

55

24

‘meta data’ statements in other formats are parsed into sepa-
rate chunks. In one embodiment, the ‘meta data’ statements
are written into an XML configuration file and the XML
configuration file is parsed to create the chunks within a
‘DXDT’ chunk.

An embodiment of a system for generating a ‘DXDT’
chunk from a series of ‘meta data’ statements contained
within an XML configuration file is shown in FIG. 3.1. The
system 380 includes an XML configuration file 382, which
can be provided to a parser 384. The XML configuration file
includes the ‘meta data’ encoded as XML. The parser parses
the XML and generates a ‘DXDT’ chunk 386 by converting
the ‘meta data’ statement into chunks that are written to the
‘DXDT’ chunk in accordance with any of the ‘meta data’
chunk formats described above.

3.3.1. Generating an ‘Index’ Chunk

As discussed above, many embodiments of ‘DXDT’
chunks in accordance with the present invention can include
an ‘index’ chunk. An ‘index’ chunk can be automatically
generated following the completion of the encoding of the
audio, video and/or subtitle tracks contained within a multi-
media file. In one embodiment, an ‘index’ chunk is generated
by referencing encoded video frames and any accompanying
audio at approximately evenly spaced intervals within an
encoded video track. In other embodiments, video frames
associated with scenes and/or chapters within an encoded
video track can be identified and used to automatically gen-
erate an ‘index’ chunk. In many embodiments, ‘index’ chunks
can be generated manually, generated automatically using
menu information or generated using any number of algo-
rithms appropriate to the sequence of video indexed by the
‘index’ chunk.

3.3. Generating a ‘DMNU” Chunk

A system that can be used to generate a ‘DMNU” chunk in
accordance with an embodiment of the present invention is
illustrated in FIG. 3.2. The menu chunk generating system
420 requires as input a media model 422 and media informa-
tion. The media information can take the form of a video
source 424, an audio source 426 and an overlay source 428.

The generation of a ‘DMNU’ chunk using the inputs to the
menu chunk generating system involves the creation of a
number of intermediate files. The media model 422 is used to
create an XML configuration file 430 and the media informa-
tion is used to create a number of AVI files 432. The XML
configuration file is created by a model transcoder 434. The
AVl files 432 are created by interleaving the video, audio and
overlay information using an interleaver 436. The video
information is obtained by using a video decoder 438 and a
video encoder 440 to decode the video source 424 and recode
it in the manner discussed below. The audio information is
obtained by using an audio decoder 442 and an audio encoder
444 to decode the audio and encode it in the manner described
below. The overlay information is generated using a first
transcoder 446 and a second transcoder 448. The first
transcoder 446 converts the overlay into a graphical represen-
tation such as a standard bitmap and the second transcoder
takes the graphical information and formats it as is required
for inclusion in the multimedia file. Once the XML file and
the AVT files containing the information required to build the
menus have been generated, the menu generator 450 can use
the information to generate a ‘DMNU” chunk 358'.

3.3.1. The Menu Model

In one embodiment, the media model is an object-oriented
model representing all of the menus and their subcompo-
nents. The media model organizes the menus into a hierar-
chical structure, which allows the menus to be organized by
language selection. A media model in accordance with an

US 9,420,287 B2

25

embodiment of the present invention is illustrated in FIG. 3.3.
The media model 460 includes a top-level ‘MediaManager’
object 462, which is associated with a number of ‘Language-
Menus’ objects 463, a ‘Media’ object 464 and a ‘Transla-
tionTable’ object 465. The ‘Menu Manager’ also contains the
default menu language. In one embodiment, the default lan-
guage can be indicated by ISO 639 two-letter language code.

The ‘LanguageMenus’ objects organize information for
various menus by language selection. All of the ‘Menu’
objects 466 for a given language are associated with the
‘LanguageMenus’ object 463 for that language. Each ‘Menu’
objectis associated with a number of ‘Button’ objects 468 and
references a number of ‘MediaTrack’ objects 488. The refer-
enced ‘MediaTrack’ objects 488 indicated the background
video and background audio for the ‘Menu’ object 466.

Each ‘Button’ object 468 is associated with an ‘Action’
object 470 and a ‘Rectangle’ object 484. The ‘Button’ object
468 also contains a reference to a ‘MediaTrack’ object 488
that indicates the overlay to be used when the button is high-
lighted on a display. Each ‘Action’ object 470 is associated
with a number of objects that can include a ‘MenuTransition’
object 472, a ‘ButtonTransition’ object 474, a ‘Return ToPlay’
object 476, a ‘Subtitle Selection’ object 478, an ‘AudioSelec-
tion’ object 480 and a ‘Play Action’ object 482. Each of these
objects define the response of the menu system to various
inputs from a user. The ‘MenuTransition’ object contains a
reference to a ‘Menu’ object that indicates a menu that should
be transitioned to in response to an action. The ‘ButtonTran-
sition’ object indicates a button that should be highlighted in
response to an action. The ‘ReturnToPlay’ object can cause a
player to resume playing a feature. The ‘SubtitleSelection’
and ‘AudioSelection’ objects contain references to ‘Title’
objects 487 (discussed below). The ‘PlayAction’ object con-
tains a reference to a ‘Chapter’ object 492 (discussed below).
The ‘Rectangle’ object 484 indicates the portion of the screen
occupied by the button.

The ‘Media’ object 464 indicates the media information
referenced in the menu system. The ‘Media’ object has a
‘MenuTracks’ object 486 and a number of “Title’ objects 487
associated with it. The ‘MenuTracks’ object 486 references
‘MediaTrack’ objects 488 that are indicative of the media
used to construct the menus (i.e. background audio, back-
ground video and overlays).

The “Title’ objects 487 are indicative of a multimedia pre-
sentation and have a number of ‘Chapter’ objects 492 and
‘MediaSource’ objects 490 associated with them. The “Title’
objects also contain a reference to a ‘Translationl.ookup’
object 494. The “Chapter’ objects are indicative of a certain
point in a multimedia presentation and have a number of
‘MediaTrack’ objects 488 associated with them. The ‘Chap-
ter’ objects also contain a reference a ‘Translationl.ookup’
object 494. Each ‘MediaTrack’ object associated with a
‘Chapter’ object is indicative of a point in either an audio,
video or subtitle track of the multimedia presentation and
references a ‘MediaSource’ object 490 and a ‘Transalation-
Lookup’ object 494 (discussed below).

The ‘TranslationTable’ object 465 groups a number of text
strings that describe the various parts of multimedia presen-
tations indicated by the “Title’ objects, the ‘Chapter’ objects
and the ‘MediaTrack’ objects. The ‘TranslationTable’ object
465 has a number of ‘TranslationL.ookup’ objects 494 asso-
ciated with it. Each ‘Translation.ookup’ object is indicative
of a particular object and has a number of ‘Translation’
objects 496 associated with it. The ‘Translation’ objects are
each indicative of a text string that describes the object indi-
cated by the ‘Translationl.ookup’ object in a particular lan-

guage.

10

15

20

25

30

40

45

50

55

60

65

26

A media object model can be constructed using software
configured to generate the various objects described above
and to establish the required associations and references
between the objects.

3.3.2. Generating an XML File

An XML configuration file is generated from the menu
model, which represents all of the menus and their sub-com-
ponents. The XML configuration file also identifies all the
media files used by the menus. The XML can be generated by
implementing an appropriate parser application that parses
the object model into XML code.

In other embodiments, a video editing application can pro-
vide a user with a user interface enabling the direct generation
of an XML configuration file without creating a menu model.

In embodiments where another menu system is the basis of
the menu model, such as a DVD menu, the menus can be
pruned by the user to eliminate menu options relating to
content not included in the multimedia file generated in accor-
dance with the practice of the present invention. In one
embodiment, this can be done by providing a graphical user
interface enabling the elimination of objects from the menu
model. In another embodiment, the pruning of menus can be
achieved by providing a graphical user interface or a text
interface that can edit the XML configuration file.

3.3.3. The Media Information

When the ‘DMNU” chunk is generated, the media infor-
mation provided to the menu generator 450 includes the data
required to provide the background video, background audio
and foreground overlays for the buttons specified in the menu
model (see description above). In one embodiment, a video
editing application such as VideoWave distributed by Roxio,
Inc. of Santa Clara, Calif. is used to provide the source media
tracks that represent the video, audio and button selection
overlays for each individual menu.

3.3.4. Generating Intermediate AV Files

As discussed above, the media tracks that are used as the
background video, background audio and foreground button
overlays are stored in a single AV file for one or more menus.
The chunks that contain the media tracks in a menu AVI file
can be created by using software designed to interleave video,
audio and button overlay tracks. The ‘audio’, ‘video’ and
‘overlay’ chunks (i.e. ‘subtitle’ chunks containing overlay
information) are interleaved into an AV1 format compliant file
using an interleaver.

As mentioned above, a separate AV file can be created for
each menu. In other embodiments, other file formats or a
single file could be used to contain the media information
used to provide the background audio, background video and
foreground overlay information.

3.3.5. Combining the XML Configuration File and the AVI
Files

In one embodiment, a computer is configured to parse
information from the XML configuration file to create a
‘WowMenu’ chunk (described above). In addition, the com-
puter can create the ‘MRIF’ chunk (described above) using
the AVI files that contain the media for each menu. The
computer can then complete the generation of the ‘DMNU’
chunk by creating the necessary references between the
‘WowMenu’ chunk and the media chunks in the ‘MRIF’
chunk. In several embodiments, the menu information can be
encrypted. Encryption can be achieved by encrypting the
media information contained in the ‘MRIF’ chunk in a similar
manner to that described below in relation to ‘video’ chunks.
In other embodiments, various alternative encryption tech-
niques are used.

US 9,420,287 B2

27
3.3.6. Automatic Generation of Menus from the Object
Model

Referring back to FIG. 3.3., a menu that contains less
content than the full menu can be automatically generated
from the menu model by simply examining the “Title’ objects
487 associated with the ‘Media object 464. The objects used
to automatically generate a menu in accordance with an
embodiment of the invention are shown in FIG. 3.3.1. Soft-
ware can generate an XML configuration file for a simple
menu that enables selection of a particular section of a mul-
timedia presentation and selection of the audio and subtitle
tracks to use. Such a menu can be used as a first so-called ‘lite’
menu in several embodiments of multimedia files in accor-
dance with the present invention.

3.3.7. Generating ‘DXDT’ and ‘DMNU’ Chunks Using a
Single Configuration File

Systems in accordance with several embodiments of the
present invention are capable of generating a single XML
configuration file containing both ‘meta data’ and menu infor-
mation and using the XML file to generate the ‘DXDT” and
‘DMNU” chunks. These systems derive the XML configura-
tion file using the ‘meta data’ information and the menu object
model. In other embodiments, the configuration file need not
be in XML.

3.4. Generating ‘Audio’ Chunks

The ‘audio’ chunks in the ‘movi’ list chunk of multimedia
files in accordance with embodiments of the present invention
can be generated by decoding an audio source and then
encoding the source into ‘audio’ chunks in accordance with
the practice of the present invention. In one embodiment, the
‘audio’ chunks can be encoded using an mp3 codec.

3.4.1. Re-Chunking Audio

Where the audio source is provided in chunks that don’t
contain audio information corresponding to the contents of a
corresponding ‘video’ chunk, then embodiments of the
present invention can re-chunk the audio. A process that can
be used to re-chunk audio is illustrated in FIG. 3.4. The
process 480 involves identifying (482) a ‘video’ chunk, iden-
tifying (484) the audio information that accompanies the
‘video’ chunk and extracting (486) the audio information
from the existing audio chunks to create (488) a new ‘audio’
chunk. The process is repeated until the decision (490) is
made that the entire audio source has been re-chunked. At
which point, the rechunking of the audio is complete (492).
3.5. Generating ‘Video’ Chunks

As described above the process of creating video chunks
can involve decoding the video source and encoding the
decoded video into ‘video’ chunks. In one embodiment, each
‘video’ chunk contains information for a single frame of
video. The decoding process simply involves taking video in
a particular format and decoding the video from that format
into a standard video format, which may be uncompressed.
The encoding process involves taking the standard video,
encoding the video and generating ‘video’ chunks using the
encoded video.

A video encoder in accordance with an embodiment of the
present invention is conceptually illustrated in FIG. 3.5. The
video encoder 500 preprocesses 502 the standard video infor-
mation 504. Motion estimation 506 is then performed on the
preprocessed video to provide motion compensation 508 to
the preprocessed video. A discrete cosine transform (DCT
transformation) 510 is performed on the motion compensated
video. Following the DCT transformation, the video is quan-
tized 512 and prediction 514 is performed. A compressed
bitstream 516 is then generated by combining a texture coded
518 version of the video with motion coding 520 generated

15

25

40

45

28

using the results of the motion estimation. The compressed
bitstream is then used to generate the ‘video’ chunks.

Inorder to perform motion estimation 506, the system must
have knowledge of how the previously processed frame of
video will be decoded by a decoding device (e.g. when the
compressed video is uncompressed for viewing by a player).
This information can be obtained by inverse quantizing 522
the output of the quantizer 512. An inverse DCT 524 can then
be performed on the output of the inverse quantizer and the
result placed in a frame store 526 for access during the motion
estimation process.

Multimedia files in accordance with embodiments of the
present invention can also include a number of psychovisual
enhancements 528. The psychovisual enhancements can be
methods of compressing video based upon human percep-
tions of vision. These techniques are discussed further below
and generally involve modifying the number of bits used by
the quantizer to represent various aspects of video. Other
aspects of the encoding process can also include psychovisual
enhancements.

In one embodiment, the entire encoding system 500 can be
implemented using a computer configured to perform the
various functions described above. Examples of detailed
implementations of these functions are provided below.
3.5.1. Preprocessing

The preprocessing operations 502 that are optionally per-
formed by an encoder 500 in accordance with an embodiment
of'the present invention can use a number of signal processing
techniques to improve the quality of the encoded video. Inone
embodiment, the preprocessing 502 can involve one or all of
deinterlacing, temporal/spatial noise reduction and resizing.
In embodiments where all three of these preprocessing tech-
niques are used, the deinterlacing is typically performed first
followed by the temporal/spatial noise reduction and the
resizing.

3.5.2. Motion Estimation and Compensation

A video encoder in accordance with an embodiment of the
present invention can reduce the number of pixels required to
represent a video track by searching for pixels that are
repeated in multiple frames. Essentially, each frame in a video
typically contains many of the same pixels as the one before
it. The encoder can conduct several types of searches for
matches in pixels between each frame (as macroblocks, pix-
els, half-pixels and quarter-pixels) and eliminates these
redundancies whenever possible without reducing image
quality. Using motion estimation, the encoder can represent
most of the picture simply by recording the changes that have
occurred since the last frame instead of storing the entire
picture for every frame. During motion estimation, the
encoder divides the frame it is analyzing into an even grid of
blocks, often referred to as ‘macroblocks’. For each ‘macrob-
lock’ in the frame, the encoder can try to find a matching block
in the previous frame. The process of trying to find matching
blocks is called a ‘motion search’. The motion of the ‘mac-
roblock’ can be represented as a two dimensional vector, i.e.
an (X,y) representation. The motion search algorithm can be
performed with various degrees of accuracy. A whole-pel
search is one where the encoder will try to locate matching
blocks by stepping through the reference frame in either
dimension one pixel at a time. Ina half-pixel search, the
encoder searches for a matching block by stepping through
the reference frame in either dimension by half of a pixel at a
time. The encoder can use quarter-pixels, other pixel fractions
or searches involving a granularity of greater than a pixel.

The encoder embodiment illustrated in FIG. 3.5. performs
motion estimation in accordance with an embodiment of the
present invention. During motion estimation the encoder has

US 9,420,287 B2

29

access to the preprocessed video 502 and the previous frame,
which is stored in a frame store 526. The previous frame is
generated by taking the output of the quantizer, performing an
inverse quantization 522 and an inverse DCT transformation
524. The reason for performing the inverse functions is so that
the frame in the frame store is as it will appear when decoded
by a player in accordance with an embodiment of the present
invention.

Motion compensation is performed by taking the blocks
and vectors generated as a result of motion estimation. The
result is an approximation of the encoded image that can be
matched to the actual image by providing additional texture
information.

3.5.3. Discrete Cosine Transform

The DCT and inverse DCT performed by the encoder illus-
trated in FIG. 3.5. are in accordance with the standard speci-
fied in ISO/IEC 14496-2:2001(E), Annex A.1 (coding trans-
forms).

3.5.3.1. Description of Transform

The DCT is a method of transforming a set of spatial-
domain data points to a frequency domain representation. In
the case of video compression, a 2-dimensional DCT converts
image blocks into a form where redundancies are more
readily exploitable. A frequency domain block can be a sparse
matrix that is easily compressed by entropy coding.

3.5.3.2. Psychovisual Enhancements to Transform

The DCT coefficients can be modified to improve the qual-
ity of the quantized image by reducing quantization noise in
areas where it is readily apparent to a human viewer. In
addition, file size can be reduced by increasing quantization
noise in portions of the image where it is not readily discern-
able by a human viewer.

Encoders in accordance with an embodiment of the present
invention can perform what is referred to as a ‘slow’ psycho-
visual enhancement. The ‘slow” psychovisual enhancement
analyzes blocks of the video image and decides whether
allowing some noise there can save some bits without degrad-
ing the video’s appearance. The process uses one metric per
block. The process is referred to as a ‘slow’ process, because
it performs a considerable amount of computation to avoid
blocking or ringing artifacts.

Other embodiments of encoders in accordance with
embodiments of the present invention implement a ‘fast’
psychovisual enhancement. The ‘fast’ psychovisual enhance-
ment is capable of controlling where noise appears within a
block and can shape quantization noise.

Both the ‘slow’ and ‘fast’ psychovisual enhancements are
discussed in greater detail below. Other psychovisual
enhancements can be performed in accordance with embodi-
ments of the present invention including enhancements that
control noise at image edges and that seek to concentrate
higher levels of quantization noise in areas of the image
where it is not readily apparent to human vision.

3.5.3.3. ‘Slow’ Psychovisual Enhancement

The ‘slow’ psychovisual enhancement analyzes blocks of
the video image and determines whether allowing some noise
can save bits without degrading the video’s appearance. In
one embodiment, the algorithm includes two stages. The first
involves generation of a differentiated image for the input
luminance pixels. The differentiated image is generated in the
manner described below. The second stage involves modify-
ing the DCT coefficients prior to quantization.

15

20

35

40

45

50

30

3.5.3.3.1. Generation of Differentiated Image

Bach pixel p',, of the differentiated image is computed
from the uncompressed source pixels, p,,, according to the
following:

P ,)Ly:ma'x(1Pxr 1y—P>g;‘: 1Px— 1y—P>g;‘: ‘nyu—PW I, ‘nyfl—
Pyl)

where

p's, Will be in the range 0 to 255 (assuming 8 bit video).
3.5.3.3.2. Modification of DCT Coefficients

The modification of the DCT coefficients can involve com-
putation of a block ringing factor, computation of block
energy and the actual modification of the coefficient values.
3.5.3.3.3. Computation of Block Ringing Factor

For each block of the image, a “ringing factor” is calculated
based on the local region of the differentiated image. In
embodiments where the block is defined as an 8x8 block, the
ringing factor can be determined using the following method.

Initially, a threshold is determined based on the maximum
and minimum luminance pixels values within the 8x8 block:

threshold,,, ,=floor((max,;, ;—ming,,;)/8)+2

The differentiated image and the threshold are used to
generate a map of the “flat” pixels in the block’s neighbor-
hood. The potential for each block to have a different thresh-
old prevents the creation of a map of flat pixels for the entire
frame. The map is generated as follows:

flat, =1 when p’, <threshold,

flat, =0 otherwise

The map of flat pixels is filtered according to a simple
logical operation:

flat’, =1 when flat, =1 and flat,,_,=1 and flat,,, =1

and flat, ;=1 flat, otherwise

The flat pixels in the filtered map are then counted over the
9%9 region that covers the 8x8 block.

flatcount,,, ,=2flat’,, for 0=x=8 and 0=y=8

The risk of visible ringing artifacts can be evaluated using
the following expression:

ringingbrisk,,, ,=((flatcount,,, ,~10)x256+20)/40

The 8x8 block’s ringing factor can then be derived using
the following expression:

Ringingfactor = 0 when ringingrisk > 255
= 255 when ringingrisk <0

= 255 — ringingrisk otherwise

3.5.3.3.4. Computation of Block Energy

The energy for blocks of the image can be calculated using
the following procedure. In several embodiments, 8x8 blocks
of the image are used.

A forward DCT is performed on the source image:

T=DCT(S)

where S is the 64 source-image luminance values of the
8x8 block in question and T is the transformed version of the
same portion of the source image.

The energy at a particular coefficient position is defined as
the square of that coefficient’s value:

e,=t,2 for 0=k=63

where t, is the kth coefficient of transformed block T.

US 9,420,287 B2

31

3.5.3.3.5. Coefficient Modification

The modification of the DCT coefficients can be performed
in accordance with the following process. In several embodi-
ments, the process is performed for every non-zero AC DCT
coefficient before quantization. The magnitude of each coef-
ficient is changed by a small delta, the value of the delta being
determined according to psychovisual techniques.

The DCT coefficient modification of each non-zero AC
coefficient c, is performed by calculating an energy based on
local and block energies using the following formula:

energy,=max(a;xe;,0.12xtotalenergy)
where a, is a constant whose value depends on the coeffi-

cient position as described in the following table:

TABLE 3

Coefficient table

0.0 1.0 1.5 2.0 2.0 2.0 2.0 2.0
1.0 1.5 2.0 2.0 2.0 2.0 2.0 2.0
1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

The energy can be modified according to the block’s ring-
ing factor using the following relationship:

energy';=ringingfactorxenergy;

The resulting value is shifted and clipped before being used
as an input to a look-up table (LUT).

e;=min(1023 Axenergy's)

d;=LUT; where i=¢;,
The look-up table is computed as follows:
LUTi:min(ﬁoor(k,ExMEx((i+0.5)/4)1/2+kﬁa,xoffset),2x

P

The value ‘offset’ depends on quantizer, Q,,, as described in
the following table:

TABLE 4
offset as a function of Q, values
Q, offset
1 -0.5
2 1.5
3 1.0
4 2.5
5 1.5
6 3.5
7 2.5
8 4.5
9 3.5
10 5.5
11 4.5
12 6.5
13 5.5
14 7.5
15 6.5
16 8.5
17 7.5
18 9.5
19 8.5
20 10.5
21 9.5
22 11.5
23 10.5

10

15

20

25

30

35

40

45

50

55

60

65

32
TABLE 4-continued

offset as a function of Q, values

Q, offset
24 12.5
25 115
26 135
27 12.5
28 145
29 135
30 155
31 145
The variable k... and k4, control the strength of the of

the psychovisual effect in flat and textured regions respec-
tively. In one embodiment, they take values in the range 0 to
1, with 0 signifying no effect and 1 meaning full effect. In one
embodiment, the values for k and kg, are established as
follows:

Luminance:

texture

1.0

Keexture™

kau1.0
Chrominance:

1.0

Keexture™

Ku=0.0

The output from the look-up table (d,) is used to modify the
magnitude of the DCT coefficient by an additive process:

ch=c,~min(dy, lc;)xsgn(cy,)

Finally, the DCT coefficient c, is substituted by the modi-
fied coefficient ¢', and passed onwards for quantization.
3.5.3.4. ‘Fast’ Psychovisual Enhancement

A “fast’ psychovisual enhancement can be performed on
the DCT coefficients by computing an ‘importance’ map for
the input luminance pixels and then modifying the DCT coef-
ficients.
3.5.3.4.1. Computing an ‘Importance’ Map

An ‘importance’ map can be generated by calculating an
‘importance’ value for each pixel in the luminance place of
the input video frame. In several embodiments, the ‘impor-
tance’ value approximates the sensitivity of the human eye to
any distortion located at that particular pixel. The ‘impor-
tance’ map is an array of pixel ‘importance’ values.

The ‘importance’ of a pixel can be determined by first
calculating the dynamic range of a block of pixels surround-
ing the pixel (d,,). In several embodiments the dynamic range
of'a3x3 block of pixels centered on the pixel location (X, y) is
computed by subtracting the value of the darkest pixel in the
area from the value of the lightest pixel in the area.

The “importance’ of a pixel (m,,) can be derived from the
pixel’s dynamic range as follows:

m,,=0.08/max(d,

-
3.5.3.4.2. Modifying DCT Coefficients

In one embodiment, the modification of the DCT coeffi-
cients involves the generation of basis-function energy matri-
ces and delta look up tables.
3.5.3.4.3. Generation of Basis-Function Energy Matrices

A set of basis-function energy matrices can be used in
modifying the DCT coefficients. These matrices contain con-
stant values that may be computed prior to encoding. An 8x8
matrix is used for each of the 64 DCT basis functions. Each
matrix describes how every pixel in an 8x8 block will be
impacted by modification of its corresponding coefficient.

3)+0.001

US 9,420,287 B2

33

The kth basis-function energy matrix is derived by taking an
8x8 matrix A, with the corresponding coefficient set to 100
and the other coefficients set to O.

G =100 if n=k

=0 otherwise

where

n represents the coefficient position within the 8x8 matrix;
0=n=63

An inverse DCT is performed on the matrix to yield a
further 8x8 matrix A';. The elements of the matrix (a';,)
represent the kth DCT basis function.

A47=iDCT(4;)
Each value in the transformed matrix is then squared:
by, =a’, 2 for 0=n=63

The process is carried out 64 times to produce the basis
function energy matrices B, 0=k=63, each comprising 64
natural values. Each matrix value is a measure of how much a
pixel at the nth position in the 8x8 block will be impacted by
any error or modification of the coefficient k.
3.5.3.4.4. Generation of Delta Look-Up Table

A look-up table (LUT) can be used to expedite the compu-
tation of the coefficient modification delta. The contents of
the table can be generated in a manner that is dependent upon
the desired strength of the ‘fast’ psychovisual enhancement
and the quantizer parameter (Q,,).

The values of the look-up table can be generated according
to the following relationship:

LUT=min(floor(128xX,..,xstrength/(i+0.5)+kgq, x
offset+0.5),2xQ,,)
where
i1s the position within the table, 0=1=1023.
strength and offset depend on the quantizer, Q,, as

described in the following table:
TABLE 5
Relationship between values of strength and offset and
the value of Q
Q, strength offset
1 0.2 -0.5
2 0.6 1.5
3 1.0 1.0
4 1.2 2.5
5 1.3 1.5
6 1.4 3.5
7 1.6 2.5
8 1.8 4.5
9 2.0 3.5
10 2.0 55
11 2.0 4.5
12 2.0 6.5
13 2.0 55
14 2.0 7.5
15 2.0 6.5
16 2.0 8.5
17 2.0 7.5
18 2.0 9.5
19 2.0 8.5
20 2.0 10.5
21 2.0 9.5
22 2.0 11.5
23 2.0 10.5
24 2.0 12.5

10

15

20

25

30

35

40

45

50

55

60

65

34
TABLE 5-continued

Relationship between values of strength and offset and

the value of Q
Q, strength offset
25 2.0 11.5
26 2.0 13.5
27 2.0 12.5
28 2.0 14.5
29 2.0 13.5
30 2.0 155
31 2.0 14.5
The variable k... and k4, control the strength of the of

the psychovisual effect in flat and textured regions respec-
tively. In one embodiment, they take values in the range 0 to
1, with 0 signifying no effect and 1 meaning full effect. In one
embodiment, the values for k and kg, are established as
follows:

Luminance:

texture

1.0

Keexture™

Kpu=1.0

Chrominance:

k,

texture

1.0

Ku=0.0

3.5.3.4.5. Modification of DCT Coefficients

The DCT coefficients can be modified using the values
calculated above. In one embodiment, each non-zero AC
DCT coefficient is modified in accordance with the following
procedure prior to quantization.

Initially, an ‘energy’ value (e,) is computed by taking the
dot product of the corresponding basis function energy matrix
and the appropriate 8x8 block from the importance map. This
‘energy’ is a measure of how quantization errors at the par-
ticular coefficient would be perceived by a human viewer. Itis
the sum of the product of pixel importance and pixel basis-
function energy:

e,=M-B;

where

M contains the 8x8 block’s importance map values; and

B, is the kth basis function energy matrix.

The resulting ‘energy’ value is shifted and clipped before
being used as an index (d,) into the delta look-up table.

e’=min[1023,floor(e,/32768)]

d=LUT;

where

i=e',

The output of the delta look-up table is used to modify the
magnitude of the DCT coefficient by an additive process:

¢’ =c-min(dy, I,)xsign(cy)

The DCT coefficient ¢, is substituted with the modified ¢',.
and passed onwards for quantization.
3.5.4. Quantization

Encoders in accordance with embodiments of the present
invention can use a standard quantizer such as a the quantizer
defined by the International Telecommunication Union as
Video Coding for Low Bitrate Communication, I[TU-T Rec-
ommendation H.263, 1996.

US 9,420,287 B2

35

3.5.4.1. Psychovisual Enhancements to Quantization

Some encoders in accordance with embodiments of the
present invention, use a psychovisual enhancement that
exploits the psychological effects of human vision to achieve
more efficient compression. The psychovisual effect can be
applied at a frame level and a macroblock level.
3.5.4.2. Frame Level Psychovisual Enhancements

When applied at a frame level, the enhancement is part of
the rate control algorithm and its goal is to adjust the encoding
so that a given amount of bit rate is best used to ensure the
maximum visual quality as perceived by human eyes. The
frame rate psychovisual enhancement is motivated by the
theory that human vision tends to ignore the details when the
action is high and that human vision tends to notice detail
when an image is static. In one embodiment, the amount of
motion is determined by looking at the sum of absolute dif-
ference (SAD) for a frame. In one embodiment, the SAD
value is determined by summing the absolute differences of
collocated luminance pixels of two blocks. In several embodi-
ments, the absolute differences of 16x16 pixel blocks is used.
In embodiments that deal with fractional pixel offsets, inter-
polation is performed as specified in the MPEG-4 standard
(an ISO/IEC standard developed by the Moving Picture
Experts Group of the ISO/IEC), before the sum of absolute
differences is calculated.

The frame-level psychovisual enhancement applies only to
the P frames of the video track and is based on SAD value of
the frame. During the encoding, the psychovisual module
keeps a record of the average SAD (i.e. SAD) of all of the P
frames ofthe video track and the average distance of the SAD
of each frame from its overall SAD (i.e. DSAD). The aver-
aging can be done using an exponential moving average algo-
rithm. In one embodiment, the one-pass rate control algo-
rithm described above can be used as the averaging period
here (see description above).

For each P frame of the video track encoded, the frame
quantizer Q (obtained from the rate control module) will have
a psychovisual correction applied to it. In one embodiment,
the process involves calculating a ratio R using the following
formula:

SAD - SAD
R= — -1
DSAD

where

lis a constant and is currently setto 0.5. The R is clipped to
within the bound of [-1, 1].

The quantizer is then adjusted according to the ration R, via
the calculation shown below:

Oug=0| Q- (4R Spe,)]

where

S same 18 a strength constant for the frame level psychovi-
sual enhancements.

The S, constant determines how strong an adjustment
can be for the frame level psychovisual. In one embodiment
of the codec, the option of setting Sj,,,,,. t0 0.2, 0.3 or 0.4 is
available.
3.5.4.3. Macroblock Level Psychovisual Enhancements

Encoders in accordance with embodiments of the present
invention that utilize a psychovisual enhancement at the mac-
roblock level attempt to identify the macroblocks that are
prominent to the visual quality of the video for a human
viewer and attempt to code those macroblocks with higher
quality. The effect of the macroblock level psychovisual

10

20

25

30

35

40

45

50

55

60

65

36

enhancements it to take bits away from the less important
parts of a frame and apply them to more important parts of the
frame. In several embodiments, enhancements are achieved
using three technologies, which are based on smoothness,
brightness and the macroblock SAD. In other embodiments
any of the techniques alone or in combination with another of
the techniques or another technique entirely can be used.

In one embodiment, all three of the macroblock level psy-
chovisual enhancements described above share a common
parameter, S, -, which controls the strength of the macrob-
lock level psychovisual enhancement. The maximum and
minimum quantizer for the macroblocks are then derived
from the strength parameter and the frame quantizer Q...
frame via the calculations shown below:

Q frame and
(1 —Suz)’

OmBMax =

QMBMin = erame " (1 _SMB)

where

Qusaazrax 18 the maximum quantizer

Qus5r72: 15 the minimum quantizer

The values Q,,z1/. a0d Q, /51, define the upper and lower
bounds to the macroblock quantizers for the entire frame. In
one embodiment, the option of setting the value S, to any of
the values 0.2, 0.3 and 0.4 is provided. In other embodiments,
other values for S, 5 can be utilized.
3.5.4.3.1. Brightness Enhancement

In embodiments where psychovisual enhancement is per-
formed based on the brightness of the macroblocks, the
encoder attempts to encode brighter macroblocks with
greater quality. The theoretical basis of this enhancement is
that relatively dark parts of the frame are more or less ignored
by human viewers. This macroblock psychovisual enhance-
ment is applied to I frames and P frames of the video track.
For each frame, the encoder looks through the whole frame
first. The average brightness (BR) is calculated and the aver-
age difference of brightness from the average (DBR) is also
calculated. These values are then used to develop two thresh-
0lds (Tzzzowers Lnrejpper)» Which can be used as indicators for
whether the psychovisual enhancement should be applied:

Tyriw=BR-DBR

TprUpper =BR+(BR-Tgr ovver)

The brightness enhancement is then applied based on the
two thresholds using the conditions stated below to generate
an intended quantizer (Q, ;) for the macroblock:

Onz=Onmatin When BR>Tpisper
015" Opme When Tppy 0,y <BR<T 521100 a0

On2=OrtBmax When BR<Tppi ryer

where

BR is the brightness value for that particular macroblock

In embodiments where the encoder is compliant with the
MPEG-4 standard, the macroblock level psychovisual bright-
ness enhancement technique cannot change the quantizer by
more than +2 from one macroblock to the next one. There-
fore, the calculated Q,,; may require modification based
upon the quantizer used in the previous macroblock.
3.5.4.3.2. Smoothness Enhancement

Encoders in accordance with embodiments of the present
invention that include a smoothness psychovisual enhance-
ment, modify the quantizer based on the spatial variation of

US 9,420,287 B2

37

the image being encoded. Use of a smoothness psychovisual
enhancement can be motivated by the theory that human
vision has an increased sensitivity to quantization artifacts in
smooth parts of an image. Smoothness psychovisual
enhancement can, therefore, involve increasing the number of
bits to represent smoother portions of the image and decreas-
ing the number of bits where there is a high degree of spatial
variation in the image.

In one embodiment, the smoothness of a portion of an
image is measured as the average difference in the luminance
of pixels in a macroblock to the brightness of the macroblock
(DR). A method of performing smoothness psychovisual
enhancement on an I frame in accordance with embodiments
of'the present invention is shown in FIG. 3.6. The process 540,
involves examining the entire frame to calculate (542) DR.
The threshold for applying the smoothness enhancement,
Tz, can then be derived (544) using the following calcula-
tion:

T —[T
DR= "5

=

The following smoothness enhancement is performed
(546) based on the threshold.

015" Opme When DR=Tpp, and

Ourz=Onpasin When DR<Tpp

where

Q, 5 1s the intended quantizer for the macroblock

DR is the deviation value for the macroblock (i.e. mean
luminance-mean brightness)

Embodiments that encode files in accordance with the
MPEG-4 standard are limited as described above in that the
macroblock level quantizer change can be at most+2 from one
macroblock to the next.
3.5.4.3.3. Macroblock SAD Enhancement

Encoders in accordance with embodiments of the present
invention can utilize a macroblock SAD psychovisual
enhancement. A macroblock SAD psychovisual enhance-
ment can be used to increase the detail for static macroblocks
and allow decreased detail in portions of a frame that are used
in a high action scene.

A process for performing a macroblock SAD psychovisual
enhancement in accordance with an embodiment of the
present invention is illustrated in FIG. 3.7. The process 570
includes inspecting (572) an entire I frame to determine the
average SAD (i.e. MBSAD) for all of the macroblocks in the
entire frame and the average difference of a macroblock’s
SAD from the average (i.e. DMBSAD) is also obtained. In
one embodiment, both of these macroblocks are averaged
over the inter-frame coded macroblocks (i.e. the macroblocks
encoded using motion compensation or other dependencies
on previous encoded video frames). Two thresholds for
applying the macroblock SAD enhancement are then derived
(574) from these averages using the following formulae:

Trssaprower—MBSAD-DMBSAD, and

TrssapUpper=MBSAD+DMBSAD

where

Ty msaprower 15 the lower threshold

Tarssapupper 18 the upper threshold, which may be
bounded by 1024 if necessary

10

15

20

25

30

35

40

45

50

55

60

65

38

The macroblock SAD enhancement is then applied (576)
based on these two thresholds according to the following
conditions:

On5=OrtBmax When MBSAD>T; MBSADUpper>
018=Qpame When T34p1 oner<SMBSAD= T msinupper

Onp=Onpasin When MBSAD<Typ54n7.0er

where

Q,,5 1s the intended quantizer for the macroblock

MBSAD is the SAD value for that particular macroblock

Embodiments that encode files in accordance with the
MPEG-4 specification are limited as described above in that
the macroblock level quantizer change can be at most+2 from
one macroblock to the next.

3.5.5. Rate Control

The rate control technique used by an encoder in accor-
dance with an embodiment of the present invention can deter-
mine how the encoder uses the allocated bit rate to encode a
video sequence. An encoder will typically seek to encode to a
predetermined bit rate and the rate control technique is
responsible for matching the bit rate generated by the encoder
as closely as possible to the predetermined bit rate. The rate
control technique can also seek to allocate the bit rate in a
manner that will ensure the highest visual quality of the video
sequence when it is decoded. Much of rate control is per-
formed by adjusting the quantizer. The quantizer determines
how finely the encoder codes the video sequence. A smaller
quantizer will result in higher quality and higher bit consump-
tion. Therefore, the rate control algorithm seeks to modify the
quantizer in a manner that balances the competing interests of
video quality and bit consumption.

Encoders in accordance with embodiments of the present
invention can utilize any of a variety of different rate control
techniques. In one embodiment, a single pass rate control
technique is used. In other embodiments a dual (or multiple)
pass rate control technique is used. In addition, a ‘video buffer
verified’ rate control can be performed as required. Specific
examples of these techniques are discussed below. However,
any rate control technique can be used in an encoder in accor-
dance with the practice of the present inventions.
3.5.5.1. One Pass Rate Control

An embodiment of a one pass rate control technique in
accordance with an embodiment of the present invention
seeks to allow high bit rate peaks for high motion scenes. In
several embodiments, the one pass rate control technique
seeks to increase the bit rate slowly in response to an increase
in the amount of motion in a scene and to rapidly decrease the
bit rate in response to a reduction in the motion in a scene.

In one embodiment, the one pass rate control algorithm
uses two averaging periods to track the bit rate. A long-term
average to ensure overall bit rate convergence and a short-
term average to enable response to variations in the amount of
action in a scene.

A one pass rate control technique in accordance with an
embodiment of the present invention is illustrated in FIG. 3.8.
The one pass rate control technique 580 commences (582) by
initializing (584) the encoder with a desired bit rate, the video
frame rate and a variety of other parameters (discussed further
below). A floating point variable is stored, which is indicative
of the quantizer. If a frame requires quantization (586), then
the floating point variable is retrieved (588) and the quantizer
obtained by rounding the floating point variable to the nearest
integer. The frame is then encoded (590). Observations are
made during the encoding of the frame that enable the deter-
mination (592) of a new quantizer value. The process decides

US 9,420,287 B2

39

(594) to repeat unless there are no more frames. At which
point, the encoding in complete (596).

As discussed above, the encoder is initialized (584) with a
variety of parameters. These parameters are the “bit rate’, the
‘frame rate’, the ‘Max Key Frame Interval’, the ‘Maximum
Quantizer’, the ‘Minimum Quantizer’, the ‘averaging
period’, the ‘reaction period’ and the ‘down/up ratio’. The
following is a discussion of each of these parameters.

3.5.5.1.1. The ‘Bit Rate’

The “bit rate’ parameter sets the target bit rate of the encod-
ing.
3.5.5.1.2. The ‘Frame Rate’

The ‘frame rate’ defines the period between frames of
video.

3.5.5.1.3. The ‘Max Key Frame Interval’

The ‘Max Key Frame Interval’ specifies the maximum
interval between the key frames. The key frames are normally
automatically inserted in the encoded video when the codec
detects a scene change. In circumstances where a scene con-
tinues for a long interval without a single cut, key frames can
be inserted in insure that the interval between key frames is
always less or equal to the ‘Max Key Frame Interval’. In one
embodiment, the ‘Max Key Frame Interval’ parameter can be
set to a value of 300 frames. In other embodiments, other
values can be used.

3.5.5.1.4. The ‘Maximum Quantizer’ and the ‘Minimum
Quantizer’

The ‘Maximum Quantizer’ and the ‘Minimum Quantizer’
parameters set the upper and lower bound of the quantizer
used in the encoding. In one embodiment, the quantizer
bounds are set at values between 1 and 31.

3.5.5.1.5. The ‘Averaging Period’

The ‘averaging period’ parameter controls the amount of
video that is considered when modifying the quantizer. A
longer averaging period will typically result in the encoded
video having a more accurate overall rate. In one embodi-
ment, an ‘averaging period’ of 2000 is used. Although in other
embodiments other values can be used.

3.5.5.1.6. The ‘Reaction Period’

The ‘reaction period’ parameter determines how fast the
encoder adapts to changes in the motion in recent scenes. A
longer ‘reaction period’ value can result in better quality high
motion scenes and worse quality low motion scenes. In one
embodiment, a ‘reaction period’ of 10 is used. Although in
other embodiments other values can be used.

3.5.5.1.7. The ‘Down/Up Ratio’

The ‘down/up ratio’ parameter controls the relative sensi-
tivity for the quantizer adjustment in reaction to the high or
low motion scenes. A larger value typically results in higher
quality high motion scenes and increased bit consumption. In
one embodiment, a ‘down/up ratio’ of 20 is used. Although in
other embodiments, other values can be used.

3.5.5.1.8. Calculating the Quantizer Value

As discussed above, the one pass rate control technique
involves the calculation of a quantizer value after the encod-
ing of each frame. The following is a description of a tech-
nique in accordance with an embodiment of the present
invention that can be used to update the quantizer value.

The encoder maintains two exponential moving averages
having pepods equal to the ‘averaglng.perlod’ (Poverage) anq
the ‘reaction period’ (P,.,.,.,) @ moving average of the bit
rate. The two exponential moving averages can be calculated
according to the relationship:

10

15

40

45

55

65

40

P-T T
+B-—
P

A=Ay

where

A, is the average at instance t;

A, | isthe average at instance t-T (usually the average in the
previous frame);

T represents the interval period (usually the frame time);
and

P is the average period, which can be either P and or

average

reaction’

The above calculated moving average is then adjusted into
bit rate by dividing by the time interval between the current
instance and the last instance in the video, using the following
calculation:

R = A~

where

R, is the bitrate;

A, is either of the moving averages; and

T is the time interval between the current instance and last
instance (it is usually the inverse of the frame rate).

The encoder can calculate the target bit rate (R,,,,,) of the
next frame as follows:

R target =R overallt (R overall - Raverage)

where

R

Raverage
period.

In several embodiments, the target bit rate is lower
bounded by 75% of the overall bit rate. If the target bit rate
drops below that bound, then it will be forced up to the bound
to ensure the quality of the video.

The encoder then updates the internal quantizer based on
the difference betweenR, .., and R IfR is less
thanR,,,,.,, then there is a likelihood that the previous frame
was of relatively low complexity. Therefore, the quantizer can

be decreased by performing the following calculation:

; 1s the overall bit rate set for the whole video; and
is the average bit rate using the long averaging

overal,

reaction’ reaction

’
Qinternat = Qinternal '(1 P)
reaction

reaction

When R is greater than R, there is a significant
likelihood that previous frame possessed a relatively high
level of complexity. Therefore, the quantizer can be increased
by performing the following calculation:

1
Qitemat = Qinternat '(1 * M)

where

S is the ‘up/down ratio’.
3.5.5.1.9. B-VOP Encoding

The algorithm described above can also be applied to
B-VOP encoding. When B-VOP is enabled in the encoding,
the quantizer for the B-VOP (Qg) is chosen based on the

US 9,420,287 B2

41

quantizer of the P-VOP (Qp) following the B-VOP. The value
can be obtained in accordance with the following relation-
ships:

Qp =2-Qp for Qp <4
3
()] =5+Z-Qp for4 < Qp <20

Qp = Qp for Qp 220

3.5.5.2. Two Pass Rate Control

Encoders in accordance with an embodiment of the present
invention that use a two (or multiple) pass rate control tech-
nique can determine the properties of a video sequence in a
first pass and then encode the video sequence with knowledge
of the properties of the entire sequence. Therefore, the
encoder can adjust the quantization level for each frame based
upon its relative complexity compared to other frames in the
video sequence.

A two pass rate control technique in accordance with an
embodiment of the present invention, the encoder performs a
first pass in which the video is encoded in accordance with the
one pass rate control technique described above and the com-
plexity of each frame is recorded (any of a variety of different
metrics for measuring complexity can be used). The average
complexity and, therefore, the average quantizer (Q,_,) canbe
determined based on the first. In the second pass, the bit
stream is encoded with quantizers determined based on the
complexity values calculated during the first pass.
3.5.5.2.1. Quantizers for I-VOPs

The quantizer Q for I-VOPs is set to 0.75xQ,,, provided
the next frame is not an I-VOP. If the next frame is also an
1-VOP, the Q (for the current frame) is set to 1.25xQ,
3.5.5.2.2. Quantizers for P-VOPs

The quantizer for the P-VOPs can be determined using the
following expression.

O=F H{F(0:9Coomplesity! Ceompienies)

where

Ceompiexiz, 18 the complexity of the frame;

Ceomplesiy 18 the average complexity of the video sequence;

F(x) is a function that provides the number which the
complexity of the frame must be multiplied to give the num-
ber of bits required to encode the frame using a quantizer with
a quantization value x;

F~'(x) is the inverse function of F(x); and

k is the strength parameter.

The following table defines an embodiment of a function
F(Q) that can be used to generator the factor that the com-
plexity of a frame must be multiplied by in order to determine
the number of bits required to encode the frame using an
encoder with a quantizer Q.

TABLE 6

Values of F(Q) with respect to Q.

Q FQ
1 1

2 04

3 0.15
4 0.08
5 0.05
6 0.032
7 0.022
8 0.017

10

15

20

25

30

35

40

45

55

60

65

42
TABLE 6-continued

Values of F(Q) with respect to Q.

Q FQ
9 0.013
10 0.01
11 0.008
12 0.0065
13 0.005
14 0.0038
15 0.0028
16 0.002

Ifthe strength parameter k is chosen to be 0, then the result
is a constant quantizer. When the strength parameter is chosen
to be 1, the quantizer is proportional to C,,,,,7exy- Several
encoders in accordance with embodiments of the present
invention have a strength parameter k equal to 0.5.
3.5.5.2.3. Quantizers for B-VOPs

The quantizer Q for the B-VOPs can be chosen using the
same technique for choosing the quantizer for B-VOPs in the
one pass technique described above.
3.5.5.3. Video Buffer Verified Rate Control

The number of bits required to represent a frame can vary
depending on the characteristics of the video sequence. Most
communication systems operate at a constant bit rate. A prob-
lem that can be encountered with variable bit rate communi-
cations is allocating sufficient resources to handle peaks in
resource usage. Several encoders in accordance with embodi-
ments of the present invention encode video with a view to
preventing overflow of a decoder video buffer, when the bit
rate of the variable bit rate communication spikes.

The objectives of video buffer verifier (VBV) rate control
can include generating video that will not exceed a decoder’s
buffer when transmitted. In addition, it can be desirable that
the encoded video match a target bit rate and that the rate
control produces high quality video.

Encoders in accordance with several embodiments of the
present invention provide a choice of at least two VBV rate
control techniques. One of the VBV rate control techniques is
referred to as causal rate control and the other technique is
referred to as Nth pass rate control.
3.5.5.3.1. Causal Rate Control

Causal VBV rate control can be used in conjunction with a
one pass rate control technique and generates outputs simply
based on the current and previous quantizer values.

An encoder in accordance with an embodiment of the
present invention includes causal rate control involving set-
ting the quantizer for frame n (i.e. Q,,) according to the fol-
lowing relationship.

1 1

+ Xbitrate + Xvetocity + Xsize

0, O

! = ! + X

0., 0 T
where

Q',, is the quantizer estimated by the single pass rate con-
trol;

X pirraze 18 calculated by determining a target bit rate based
on the drift from the desired bit rate;

X etocizy 18 calculated based on the estimated time until the
VBV buffer over- or under-flows;

X0 18 applied on the result of P-VOPs only and is calcu-
lated based on the rate at which the size of compressed
P-VOPs is changing over time;

X i 18 the drift from the desired bit rate.

US 9,420,287 B2

43

In several embodiments, the causal VBV rate control may
be forced to drop frames and insert stuffing to respect the
VBV model. If a compressed frame unexpectedly contains
too many or two few bits, then it can be dropped or stuffed.
3.5.5.3.2. Nth Pass VBV Rate Control

Nth pass VBV rate control can be used in conjunction with
a multiple pass rate control technique and it uses information
garnered during previous analysis of the video sequence.
Encoders in accordance with several embodiments of the
present invention perform Nth pass VBV rate control accord-
ing to the process illustrated in FIG. 3.9. The process 600
commences with the first pass, during which analysis (602) is
performed. Map generation is performed (604) and a strategy
is generated (606). The nth pass Rate Control is then per-
formed (608).
3.5.5.3.3. Analysis

In one embodiment, the first pass uses some form of causal
rate control and data is recorded for each frame concerning
such things as the duration of the frame, the coding type of the
frame, the quantizer used, the motion bits produced and the
texture bits produced. In addition, global information such as
the timescale, resolution and codec settings can also be
recorded.
3.5.5.3.4. Map Generation

Information from the analysis is used to generate a map of
the video sequence. The map can specify the coding type used
for each frame (I/B/P) and can include data for each frame
concerning the duration of the frame, the motion complexity
and the texture complexity. In other embodiments, the map
may also contain information enabling better prediction of
the influence of quantizer and other parameters on com-
pressed frame size and perceptual distortion. In several
embodiments, map generation is performed after the N-1th
pass is completed.
3.5.5.3.5. Strategy Generation

The map can be used to plan a strategy as to how the Nth
pass rate control will operate. The ideal level of the VBV
buffer after every frame is encoded can be planned. In one
embodiment, the strategy generation results in information
for each frame including the desired compressed frame size,
an estimated frame quantizer. In several embodiments, strat-
egy generation is performed after map generation and prior to
the Nth pass.

In one embodiment, the strategy generation process
involves use of an iterative process to simulate the encoder
and determine desired quantizer values for each frame by
trying to keep the quantizer as close as possible to the median
quantizer value. A binary search can be used to generate a
base quantizer for the whole video sequence. The base quan-
tizer is the constant value that causes the simulator to achieve
the desired target bit rate. Once the base quantizer is found,
the strategy generation process involves consideration of the
VBY constrains. In one embodiment, a constant quantizer is
used if this will not modify the VBV constrains. In other
embodiments, the quantizer is modulated based on the com-
plexity of motion in the video frames. This can be further
extended to incorporate masking from scene changes and
other temporal effects.
3.5.5.3.6. In-Loop Nth Pass Rate Control

In one embodiment, the in-loop Nth pass rate control uses
the strategy and uses the map to make the best possible
prediction of the influence of quantizer and other parameters
on compressed frame size and perceptual distortion. There
can be a limited discretion to deviate from the strategy to take
short-term corrective strategy. Typically, following the strat-
egy will prevent violation of the VBV model. In one embodi-

25

30

35

40

45

55

60

44

ment, the in-loop Nth pass rate control uses a PID control
loop. The feedback in the control loop is the accumulated drift
from the ideal bitrate.

Although the strategy generation does not involve drop-
ping frames, the in-loop Nth rate control may drop frames if
the VBV buffer would otherwise underflow. Likewise, the
in-loop Nth pass rate control can request video stuffing to be
inserted to prevent ViBV overflow.

3.5.6. Predictions

In one embodiment, AD/DC prediction is performed in a
manner that is compliant with the standard referred to as
ISO/IEC 14496-2:2001(E), section 7.4.3. (DC and AC pre-
diction) and 7.7.1. (field DC and AC prediction).

3.5.7. Texture Coding

An encoder in accordance with an embodiment of the
present invention can perform texture coding in a manner that
is compliant with the standard referred to as ISO/IEC 14496-
2:2001(E), annex B (variable length codes) and 7.4.1. (vari-
able length decoding).

3.5.8. Motion Coding

An encoder in accordance with an embodiment of the
present invention can perform motion coding in a manner that
is compliant with the standard referred to as ISO/IEC 14496-
2:2001(E), annex B (variable length codes) and 7.6.3. (mo-
tion vector decoding).

3.5.9. Generating ‘Video’ Chunks

The video track can be considered a sequence of frames 1
to N. Systems in accordance with embodiments of the present
invention are capable of encoding the sequence to generate a
compressed bitstream. The bitstream is formatted by seg-
menting it into chunks 1 to N. Each video frame n has a
corresponding chunk n.

The chunks are generated by appending bits from the bit-
stream to chunk n until it, together with the chunks 1 through
n-1 contain sufficient information for a decoder in accor-
dance with an embodiment of the present invention to decode
the video framen. In instances where sufficient information is
contained in chunks 1 through n-1 to generate video frame n,
an encoder in accordance with embodiments of the present
invention can include a marker chunk. In one embodiment,
the marker chunk is a not-coded P-frame with identical timing
information as the previous frame.

3.6. Generating ‘Subtitle’ Chunks

An encoder in accordance with an embodiment of the
present invention can take subtitles in one of a series of
standard formats and then converts the subtitles to bit maps.
The information in the bit maps is then compressed using run
length encoding. The run length encoded bit maps are the
formatted into a chunk, which also includes information con-
cerning the start time and the stop time for the particular
subtitle contained within the chunk. In several embodiments,
information concerning the color, size and position of the
subtitle on the screen can also be included in the chunk.
Chunks can be included into the subtitle track that set the
palette for the subtitles and that indicate that the palette has
changed. Any application capable of generating a subtitle in a
standard subtitle format can be used to generate the text of the
subtitles. Alternatively, software can be used to convert text
entered by a user directly into subtitle information.

3.7. Interleaving

Once the interleaver has received all of the chunks
described above, the interleaver builds a multimedia file.
Building the multimedia file can involve creating a ‘CSET’
chunk, an ‘INFO’ list chunk, a ‘hdrl’ chunk, a ‘movi’ list
chunk and an idx1 chunk. Methods in accordance with

US 9,420,287 B2

45

embodiments of the present invention for creating these
chunks and for generating multimedia files are described
below.

3.7.1. Generating a ‘CSET’ Chunk

As described above, the ‘CSET’ chunk is optional and can
generated by the interleaver in accordance with the AVI Con-
tainer Format Specification.

3.7.2. Generating a ‘INFO’ List Chunk

As described above, the ‘INFO’ list chunk is optional and
can be generated by the interleaver in accordance with the
AVI Container Format Specification.

3.7.3. Generating the ‘hdrl’ List Chunk

The “hdrl’ list chunk is generated by the interleaver based
on the information in the various chunks provided to the
interleaver. The ‘hdrl” list chunk references the location
within the file of the referenced chunks. In one embodiment,
the ‘hdrl” list chunk uses file offsets in order to establish
references.

3.7.4. Generating the ‘Movi’ List Chunk

As described above, ‘movi’ list chunk is created by encod-
ing audio, video and subtitle tracks to create ‘audio’, ‘video’
and ‘subtitle chunks and then interleaving these chunks. In
several embodiments, the ‘movi’ list chunk can also include
digital rights management information.
3.7.4.1. Interleaving the Video/Audio/Subtitles

A variety of rules can be used to interleave the audio, video
and subtitle chunks. Typically, the interleaver establishes a
number of queues for each of the video and audio tracks. The
interleaver determines which queue should be written to the
output file. The queue selection can be based on the interleave
period by writing from the queue that has the lowest number
ofinterleave periods written. The interleaver may have to wait
for an entire interleave period to be present in the queue
before the chunk can be written to the file.

In one embodiment, the generated ‘audio,” ‘video’ and
‘subtitle’ chunks are interleaved so that the ‘audio’ and ‘sub-
title’ chunks are located within the file prior to the ‘video’
chunks containing information concerning the video frames
to which they correspond. In other embodiments, the ‘audio’
and ‘subtitle’ chunks can be located after the ‘video’ chunks
to which they correspond. The time differences between the
location of the ‘audio,” “video’ and ‘subtitle’ chunks is largely
dependent upon the buffering capabilities of players that are
used to play the devices. In embodiments where buffering is
limited or unknown, the interleaver interleaves the ‘audio,’
‘video’ and ‘subtitle’ chunks such that the ‘audio’ and ‘sub-
title’ chunks are located between ‘video’ chunks, where the
‘video’ chunk immediately following the ‘audio’ and ‘sub-
title’ chunk contains the first video frame corresponding to the
audio or subtitle.
3.7.4.2. Generating DRM Information

In embodiments where DRM is used to protect the video
content of a multimedia file, the DRM information can be
generated concurrently with the encoding of the video
chunks. As each chunk is generated, the chunk can be
encrypted and a DRM chunk generated containing informa-
tion concerning the encryption of the video chunk.
3.7.4.3. Interleaving the DRM Information

An interleaver in accordance with an embodiment of the
present invention interleaves a DRM chunk containing infor-
mation concerning the encryption of a video chunk prior to
the video chunk. In one embodiment, the DRM chunk for
video chunk n is located between video chunk n—1 and video
chunk n. In other embodiments, the spacing of the DRM
before and after the video chunk n is dependent upon the
amount of buffering provided within device decoding the
multimedia file.

10

15

20

25

30

35

40

45

50

55

60

65

46
3.7.5. Generating the ‘Idx1’ Chunk

Once the ‘movi’ list chunk has been generated, the genera-
tion of the ‘idx 1’ chunk is a simple process. The ‘idx1’ chunk
is created by reading the location within the ‘movi’ list chunk
of each ‘data’ chunk. This information is combined with
information read from the ‘data’ chunk concerning the track
to which the ‘data’ chunk belongs and the content of the ‘data’
chunk. All of this information is then inserted into the ‘idx1’
chunk in a manner appropriate to whichever of the formats
described above is being used to represent the information.
4. Transmission and Distribution of Multimedia File

Once a multimedia file is generated, the file can be distrib-
uted over any of a variety of networks. The fact that in many
embodiments the elements required to generate a multimedia
presentation and menus, amongst other things, are contained
within a single file simplifies transfer of the information. In
several embodiments, the multimedia file can be distributed
separately from the information required to decrypt the con-
tents of the multimedia file.

In one embodiment, multimedia content is provided to a
first server and encoded to create a multimedia file in accor-
dance with the present invention. The multimedia file can
then be located either at the first server or at a second server.
In other embodiments, DRM information can be located at
the first server, the second server or a third server. In one
embodiment, the first server can be queried to ascertain the
location of the encoded multimedia file and/or to ascertain the
location of the DRM information.

5. Decoding Multimedia File

Information from a multimedia file in accordance with an
embodiment of the present invention can be accessed by a
computer configured using appropriate software, a dedicated
player that is hardwired to access information from the mul-
timedia file or any other device capable of parsing an AV file.
In several embodiments, devices can access all of the infor-
mation in the multimedia file. In other embodiments, a device
may be incapable of accessing all of the information in a
multimedia file in accordance with an embodiment of the
present invention. In a particular embodiment, a device is not
capable of accessing any of the information described above
that is stored in chunks that are not specified in the AVI file
format. In embodiments where not all of the information can
be accessed, the device will typically discard those chunks
that are not recognized by the device.

Typically, a device that is capable of accessing the infor-
mation contained in a multimedia file in accordance with an
embodiment of the present invention is capable of performing
a number of functions. The device can display a multimedia
presentation involving display of video on a visual display,
generate audio from one of potentially a number of audio
tracks on an audio system and display subtitles from poten-
tially one of a number of subtitle tracks. Several embodiments
can also display menus on a visual display while playing
accompanying audio and/or video. These display menus are
interactive, with features such as selectable buttons, pull
down menus and sub-menus. In some embodiments, menu
items can point to audio/video content outside the multimedia
file presently being accessed. The outside content may be
either located local to the device accessing the multimedia file
or it may be located remotely, such as over a local area, wide
are or public network. Many embodiments can also search
one or more multimedia files according to ‘meta data’
included within the multimedia file(s) or ‘meta data’ refer-
enced by one or more of the multimedia files.

5.1. Display of Multimedia Presentation

Given the ability of multimedia files in accordance with

embodiments of the present invention to support multiple

US 9,420,287 B2

47

audio tracks, multiple video tracks and multiple subtitle
tracks, the display of a multimedia presentation using such a
multimedia file that combines video, audio and/or subtitles
can require selection of a particular audio track, video track
and/or subtitle track either through a visual menu system or a
pull down menu system (the operation of which are discussed
below) or via the default settings of the device used to gen-
erate the multimedia presentation. Once an audio track, video
track and potentially a subtitle track are selected, the display
of the multimedia presentation can proceed.

A process for locating the required multimedia information
from a multimedia file including DRM and displaying the
multimedia information in accordance with an embodiment
of'the present invention is illustrated in FIG. 4.0. The process
620 includes obtaining the encryption key required to decrypt
the DRM header (622). The encryption key is then used to
decrypt (624) the DRM header and the first DRM chunk is
located (626) within the ‘movi’ list chunk of the multimedia
file. The encryption key required to decrypt the ‘DRM’ chunk
is obtained (628) from the table in the ‘DRM” header and the
encryption key is used to decrypt an encrypted video chunk.
The required audio chunk and any required subtitle chunk
accompany the video chunk are then decoded (630) and the
audio, video and any subtitle information are presented (632)
via the display and the sound system.

In several embodiments the chosen audio track can include
multiple channels to provide stereo or surround sound audio.
When a subtitle track is chosen to be displayed, a determina-
tion can be made as to whether the previous video frame
included a subtitle (this determination may be made in any of
a variety of ways that achieves the outcome of identifying a
previous ‘subtitle’ chunk that contained subtitle information
that should be displayed over the currently decoded video
frame). If the previous subtitle included a subtitle and the
timing information for the subtitle indicates that the subtitle
should be displayed with the current frame, then the subtitle is
superimposed on the decoded video frame. If the previous
frame did not include a subtitle or the timing information for
the subtitle on the previous frame indicates that the subtitle
should not be displayed in conjunction with the currently
decoded frame, then a ‘subtitle’ chunk for the selected subtitle
track is sought. If a ‘subtitle’ chunk is located, then the sub-
title is superimposed on the decoded video. The video (in-
cluding any superimposed subtitles) is then displayed with
the accompanying audio.

Returning to the discussion of FIG. 4.0., the process deter-
mines (634) whether there are any additional DRM chunks. If
there are, then the next DRM chunk is located (626) and the
process continues until no additional DRM chunks remain. At
which point, the presentation of the audio, video and/or sub-
title tracks is complete (636).

In several embodiments, a device can seek to a particular
portion of the multimedia information (e.g. a particular scene
of' a movie with a particular accompanying audio track and
optionally a particular accompanying subtitle track) using
information contained within the ‘hdrl’ chunk of a multime-
dia file in accordance with the present invention. In many
embodiments, the decoding of the ‘video’ chunk, ‘audio’
chunk and/or ‘subtitle’ chunk can be performed in parallel
with other tasks.

An example of a device capable of accessing information
from the multimedia file and displaying video in conjunction
with a particular audio track and/or a particular subtitle track
is a computer configured in the manner described above using
software. Another example is a DVD player equipped with a
codec that includes these capabilities. In other embodiments,
any device configured to locate or select (whether intention-

10

15

20

25

30

35

40

45

50

55

60

65

48

ally or arbitrarily) ‘data’ chunks corresponding to particular
media tracks and decode those tracks for presentation is
capable of generating a multimedia presentation using a mul-
timedia file in accordance with the practice of the present
invention.

In several embodiments, a device can play multimedia
information from a multimedia file in combination with mul-
timedia information from an external file. Typically, such a
device would do so by sourcing an audio track or subtitle track
from a local file referenced in a multimedia file of the type
described above. Ifthe referenced file is not stored locally and
the device is networked to the location where the device is
stored, then the device can obtain a local copy of the file. The
device would then access both files, establishing a video, an
audio and a subtitle (if required) pipeline into which the
various tracks of multimedia are fed from the different file
sources.

5.1.1. Non-Sequential Display of Multimedia Presentation

Many embodiments of decoders in accordance with the
present invention are capable of displaying a multimedia
presentation contained within a multimedia file non-sequen-
tially. Non-sequential display can include playing the
sequence in reverse and/or increasing the apparent speed with
which the sequence is displayed by skipping frames in the
sequence. Non-sequential display can also include skipping
in an irregular fashion between different portions of a multi-
media presentation.

In several embodiments, the decoder uses an ‘index’ chunk
within the ‘DXDT’ of a multimedia file to locate particular
encoded video frames. Knowledge of the location of specific
encoded video frames can be used to skip frames either in a
regular fashion (such as during fast forwarding or rewinding)
or in an irregular fashion (such as when skipping between
scenes or chapters).

A process that can be used in accordance with an embodi-
ment of the method of the invention to locate a specific video
frame using an ‘index’ chunk is shown in FIG. 4.0.1. The
process 640 commences with the identification (641a) of the
particular frame in a video sequence that is being sought. A
search (6415) can then be performed through an ‘index’
chunk to locate the ‘tag’ chunk that references a video frame
closest to the frame being sought. In one embodiment, the
closest preceding video frame is sought. Once the closest
video frame has been located, information within the ‘tag’
chunk can be used to provide (641c¢) information concerning
the location of the encoded video frame referenced by the
‘tag’ chunk within the multimedia file. In many embodiments,
information within the ‘tag’ chunk can also be used to locate
information concerning the encoded video frame within the
‘idx1’ chunk. Knowing the corresponding location of the
‘idx1’ chunk can increase search time through the ‘idx1’
chunk, when attempting to locate associated information.

A process for locating the ‘tag’ chunk within an ‘index’
chunk that references the preceding frame closest to a desired
video frame within a video sequence is shown in FIG. 4.0.2.
The process 142 commences with the identification (143a) of
a current ‘tag’ chunk. The current ‘tag’ chunk is typically the
first chunk in the ‘index’ chunk. The position of the desired
video frame relative to the video frame referenced by the
current ‘tag’ chunk is then determined (1434). The process
then attempts (143¢) to locate a next ‘tag’ chunk. If there are
no more ‘tag’ chunks remaining in the ‘index’ chunk, then the
search is complete (1434). In one embodiment, the position of
the encoded video frame and/or audio information referenced
by the last ‘tag’ chunk in the ‘index’ chunk is returned. In
other embodiments, such as embodiments where the last
frame of the video sequence is referenced by a ‘tag’ chunk, the

US 9,420,287 B2

49

inability to locate anext ‘tag’ chunk is an indication that either
the encoded video frame could not be located in the multime-
dia file or that an error has occurred.

When a next ‘tag’ chunk can be located from within the
‘index’ chunk, the process compares (143¢) the positions of
the encoded video frame referenced by the next ‘tag’ chunk
and the desired video chunk. A decision (143f) is then made
based upon whether the desired video frame lies between the
encoded video frames in the sequence referenced by the cur-
rent and next ‘tag’ chunks. If the desired video frame lies
between the referenced frames, then the position of the video
frame and any audio referenced by the current ‘tag’ chunk
within the multimedia file are returned (143g) by the process.

When the desired video frame is not located between the
frames referenced by the current and next ‘tag’ chunks, then
the next ‘tag’ chunk becomes (143/) the current ‘tag’ chunk.
The process repeats (143a) until the condition that the desired
video frame be located between the encoded video frames
referenced by the current and next ‘tag’ chunks is satisfied
(143g) or all of the ‘tag’ chunks have been inspected (1434).

In further embodiments, the location of a desired frame can
be further refined by using the references within the ‘index’
chunk to the corresponding information within the ‘idx1’
chunk to search for a reference within the ‘idx1’ chunk to a
specifically desired encoded video frame that is not refer-
enced in the ‘index’ chunk.

Although the processes shown in FIGS. 4.0.1. and 4.0.2.
are discussed with reference to the location of a desired video
frame, similar processes in accordance with an embodiment
of'the invention could also be used to locate a desired portion
of one or more audio or subtitle tracks. In addition, similar
processes in accordance with embodiments of the present
invention can be used to locate the video frame, portion of
audio track or portion of subtitle track referenced in an
‘index’ chunk that is closest to a particular time, where the
time is measured relative to the running time of a video, audio
or multimedia presentation stored within a multimedia file.
Furthermore, similar processes can be used to locate infor-
mation within the ‘idx1’ chunk.

5.2. Generation of Menus

A decoder in accordance with an embodiment of the
present invention is illustrated in FIG. 4.1. The decoder 650
processes a multimedia file 652 in accordance with an
embodiment of the present invention by providing the file to
a demultiplexer 654. The demultiplexer extracts the ‘DMNU’
chunk from the multimedia file and extracts all of the ‘Lan-
guageMenus’ chunks from the ‘DMNU’ chunk and provides
them to a menu parser 656. The demultiplexer also extracts all
of'the ‘Media’ chunks from the ‘DMNU’ chunk and provides
them to a media renderer 658. The menu parser 656 parses
information from the ‘LanguageMenu’ chunks to build a state
machine representing the menu structure defined in the ‘Lan-
guageMenu’ chunk. The state machine representing the menu
structure can be used to provide displays to the user and to
respond to user commands. The state machine is provided to
a menu state controller 660. The menu state controller keeps
track of the current state of the menu state machine and
receives commands from the user. The commands from the
user can cause a state transition. The initial display provided
to auser and any updates to the display accompanying a menu
state transition can be controlled using a menu player inter-
face 662. The menu player interface 662 can be connected to
the menu state controller and the media render. The menu
player interface instructs the media renderer which media
should be extracted from the media chunks and provided to
the user via the player 664 connected to the media renderer.
The user can provide the player with instructions using an

5

10

15

20

25

30

35

40

45

50

55

60

65

50

input device such as a keyboard, mouse or remote control.
Generally the multimedia file dictates the menu initially dis-
played to the user and the user’s instructions dictate the audio
and video displayed following the generation of the initial
menu. The system illustrated in FIG. 4.1. can be implemented
using a computer and software. In other embodiments, the
system can be implemented using function specific integrated
circuits or a combination of software and firmware.

An example of'a menu in accordance with an embodiment
of the present invention is illustrated in FIG. 4.2. The menu
display 670 includes four button areas 672, background video
674, including a title 676, and a pointer 678. The menu also
includes background audio (not shown). The visual effect
created by the display can be deceptive. The visual appear-
ance of the buttons is typically part of the background video
and the buttons themselves are simply defined regions of the
background video that have particular actions associated with
them, when the region is activated by the pointer. The pointer
is typically an overlay.

FIG. 4.3. conceptually illustrates the source of all of the
information in the display shown in FIG. 4.2. The background
video 674 can include a menu title, the visual appearance of
the buttons and the background of the display. All of these
elements and additional elements can appear static or ani-
mated. The background video is extracted by using informa-
tion contained in a ‘MediaTrack’ chunk 700 that indicates the
location of background video within a video track 702. The
background audio 706 that can accompany the menu can be
located using a ‘MediaTrack’ chunk 708 that indicates the
location of the background audio within an audio track 710.
As described above, the pointer 678 is part of an overlay 713.
The overlay 713 can also include graphics that appear to
highlight the portion of the background video that appears as
a button. In one embodiment, the overlay 713 is obtained
using a ‘MediaTrack’ chunk 712 that indicates the location of
the overlay within a overlay track 714. The manner in which
the menu interacts with a user is defined by the ‘Action’
chunks (not shown) associated with each ofthe buttons. In the
illustrated embodiment, a ‘PlayAction’ chunk 716 is illus-
trated. The ‘PlayAction’ chunk indirectly references (the
other chunks referenced by the ‘PlayAction” chunk are not
shown) a scene within a multimedia presentation contained
within the multimedia file (i.e. an audio, video and possibly a
subtitle track). The ‘Play Action’ chunk 716 ultimately refer-
ences the scene using a ‘MediaTrack’ chunk 718, which indi-
cates the scene within the feature track. A point in a selected
or default audio track and potentially a subtitle track are also
referenced.

As the user enters commands using the input device, the
display may be updated not only in response to the selection
of button areas but also simply due to the pointer being
located within a button area. As discussed above, typically all
of the media information used to generate the menus is
located within the multimedia file and more specifically
within a ‘DMNU’ chunk. Although in other embodiments, the
information can be located elsewhere within the file and/or in
other files.

5.3. Access the Meta Data

‘Meta data’ is a standardized method of representing infor-
mation. The standardized nature of ‘Meta data’ enables the
datato be accessed and understood by automatic processes. In
one embodiment, the ‘meta data’ is extracted and provided to
a user for viewing. Several embodiments enable multimedia
files on a server to be inspected to provide information con-
cerning a users viewing habits and viewing preferences. Such
information could be used by software applications to recom-
mend other multimedia files that a user may enjoy viewing. In

US 9,420,287 B2

51

one embodiment, the recommendations can be based on the
multimedia files contained on servers of other users. In other
embodiments, a user can request a multimedia file and the file
can be located by a search engine and/or intelligent agents
that inspect the ‘meta data’ of multimedia files in a variety of
locations. In addition, the user can chose between various
multimedia files containing a particular multimedia presen-
tation based on ‘meta data’ concerning the manner in which
each of the different versions of the presentation were
encoded.

In several embodiments, the ‘meta data’ of multimedia files
in accordance with embodiments of the present invention can
be accessed for purposes of cataloging or for creating a simple
menu to access the content of the file.

While the above description contains many specific
embodiments of the invention, these should not be construed
as limitations on the scope of the invention, but rather as an
example of one embodiment thereof. For example, a multi-
media file in accordance with an embodiment of the present
invention can include a single multimedia presentation or
multiple multimedia presentations. In addition, such a file can
include one or more menus and any variety of different types
of ‘meta data’. Accordingly, the scope of the invention should
be determined not by the embodiments illustrated, but by the
appended claims and their equivalents.

What is claimed is:

1. A device for processing a multimedia file, the device
comprising:

a processor; and

memory comprising a multimedia file comprising:

a series of encoded video frames;

a first index that includes information indicative of the
location within the file and characteristics of a subset
of the encoded video frames;

a separate second index that includes information
indicative of the location within the file of information
within the first index, where the first index contains a
reference a specific encoded video frame that is not
referenced in the second index; and

the second index being located prior to the series of
encoded video frames.

2. The device of claim 1, wherein:

the first index includes at least one tag that references an

encoded video frame in the subset of encoded video

frames;

each tag comprises:

the location within the file of the referenced encoded
video frame;

the frame number of the encoded video frame in the
sequence of encoded video frames.

3. The device of claim 2, wherein the multimedia file fur-
ther comprises:

at least one audio track;

wherein each tag further comprises a reference to a portion

of at least one of the audio tracks;

wherein the portion of the track that is referenced accom-

panies the encoded video frame referenced by the tag.

4. The device of claim 2, wherein:

each tag further comprises a reference to information

located within the first index; and

the information referenced in the first index is indicative of

the location within the file and characteristics of the

encoded video frame referenced by the tag.

10

15

20

35

40

45

50

60

52

5. An encoder comprising:

a processor;

a memory including a file containing at least one sequence

of encoded video frames;

wherein the processor is configured to generate a first index

that references a subset of the encoded video frames in
the sequence of encoded video frames and a second
index that includes information indicative of the location
within the file of information within the first index,
where the first index contains a reference to a specific
encoded video frame that is not referenced in the second
index;

wherein the processor is further configured to encode a

multimedia file including the at least one sequence of
encoded video frames, the first index, and the second
index so that the second index is located within the
multimedia file prior to the series of encoded video
frames.

6. The encoder of claim 5, wherein:

the processor is configured to generate a complete index

that references all of the encoded video frames in the

sequence of encoded video frames; and

each reference to an encoded video frame in the first index

includes a reference to the reference to that frame in the

complete index.

7. The encoder of claim 5, wherein each reference to an
encoded video frame in the first index includes the sequence
number of the encoded video frame.

8. The encoder of claim 7, wherein the processor is con-
figured to include in each reference to an encoded video frame
a reference to a location within at least one sound track.

9. A decoder, comprising:

a processor;

a memory containing a multimedia file;

wherein the multimedia file includes:

a sequence of encoded video frames;

a first index that includes information indicative of the
location within the file and characteristics of a subset
of the encoded video frames;

a second index that includes information indicative of
the location within the file of information within the
first index;

wherein the first index contains a reference to a specific
encoded video frame that is not referenced in the
second index and the second index is located prior to
the series of encoded video frames;

wherein the processor is configured to locate a particular
encoded video frame within the multimedia file using
the first index and to playback the sequence of
encoded video frames starting from the located
encoded video frame.

10. The decoder of claim 9, wherein the processor is con-
figured to locate reference information in the complete index
using the abridged index.

11. The decoder of claim 9, wherein:

the multimedia file includes at least one audio track accom-

panying the sequence of encoded video frames; and

each reference to an encoded video frame in the abridged
index includes a reference to a portion of at least one of
the video tracks.

